Show simple item record

Files in this item


Item metadata

dc.contributor.authorAnastasiou, A. D.
dc.contributor.authorStrafford, S.
dc.contributor.authorThomson, C. L.
dc.contributor.authorGardy, J.
dc.contributor.authorEdwards, T. J.
dc.contributor.authorMalinowski, M.
dc.contributor.authorHussain, S. A.
dc.contributor.authorMetzger, N.K.
dc.contributor.authorHassanpour, A.
dc.contributor.authorBrown, C. T. A.
dc.contributor.authorBrown, A. P.
dc.contributor.authorDuggal, M. S.
dc.contributor.authorJha, A.
dc.identifier.citationAnastasiou , A D , Strafford , S , Thomson , C L , Gardy , J , Edwards , T J , Malinowski , M , Hussain , S A , Metzger , N K , Hassanpour , A , Brown , C T A , Brown , A P , Duggal , M S & Jha , A 2018 , ' Exogenous mineralization of hard tissues using photo-absorptive minerals and femto-second lasers : the case of dental enamel ' , Acta Biomaterialia , vol. 71 , pp. 86-95 .
dc.identifier.otherPURE: 252335685
dc.identifier.otherPURE UUID: 6244fad0-540b-46a1-85b8-44de27f50c18
dc.identifier.otherRIS: urn:768D282FB09A4C45B9C875AF9793A3E6
dc.identifier.otherScopus: 85042649577
dc.identifier.otherWOS: 000431470300007
dc.identifier.otherORCID: /0000-0002-4405-6677/work/86537145
dc.descriptionThe authors acknowledge support from the sponsors of this work; Marie Curie IF (PRe-FActo), IKC PoF (PRUF), EPSRC LUMIN (EP/K020234/1) and EU-Marie-Curie-IAPP LUSTRE (324538) projects.en
dc.description.abstractA radical new methodology for the exogenous mineralization of hard tissues is demonstrated in the context of laser-biomaterials interaction. The proposed approach is based on the use of femtosecond pulsed lasers (fs) and Fe3+-doped calcium phosphate minerals (specifically in this work fluorapatite powder containing Fe2O3 nanoparticles (NP)). A layer of the synthetic powder is applied to the surface of eroded bovine enamel and is irradiated with a fs laser (1040 nm wavelength, 1 GHz repetition rate, 150 fs pulse duration and 0.4 W average power). The Fe2O3 NPs absorb the light and may act as thermal antennae, dissipating energy to the vicinal mineral phase. Such a photothermal process triggers the sintering and densification of the surrounding calcium phosphate crystals thereby forming a new, dense layer of typically ∼20 μm in thickness, which is bonded to the underlying surface of the natural enamel. The dispersed iron oxide NPs, ensure the localization of temperature excursion, minimizing collateral thermal damage to the surrounding natural tissue during laser irradiation. Simulated brushing trials (pH cycle and mechanical force) on the synthetic layer show that the sintered material is more acid resistant than the natural mineral of enamel. Furthermore, nano-indentation confirms that the hardness and Young’s modulus of the new layers are significantly more closely matched to enamel than current restorative materials used in clinical dentistry. Although the results presented herein are exemplified in the context of bovine enamel restoration, the methodology may be more widely applicable to human enamel and other hard-tissue regenerative engineering.
dc.relation.ispartofActa Biomaterialiaen
dc.rightsCrown Copyright © 2018 Published by Elsevier Ltd on behalf of Acta Materialia Inc. This is an open access article under the CC BY license (
dc.subjectLaser sinteringen
dc.subjectIron oxide nanoparticlesen
dc.subjectRK Dentistryen
dc.subjectTP Chemical technologyen
dc.subjectQC Physicsen
dc.titleExogenous mineralization of hard tissues using photo-absorptive minerals and femto-second lasers : the case of dental enamelen
dc.typeJournal articleen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews.School of Physics and Astronomyen
dc.description.statusPeer revieweden

This item appears in the following Collection(s)

Show simple item record