Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorGerasimou, Georgios
dc.date.accessioned2018-04-11T23:33:11Z
dc.date.available2018-04-11T23:33:11Z
dc.date.issued2015-05
dc.identifier.citationGerasimou , G 2015 , ' (Hemi)Continuity of additive preference preorders ' Journal of Mathematical Economics , vol. 58 , pp. 79-81 . https://doi.org/10.1016/j.jmateco.2015.03.009en
dc.identifier.issn0304-4068
dc.identifier.otherPURE: 179503460
dc.identifier.otherPURE UUID: edc184bb-7551-4fc6-a0e6-a80d19c46b95
dc.identifier.otherScopus: 84929326096
dc.identifier.otherORCID: /0000-0003-3712-3154/work/59698751
dc.identifier.otherWOS: 000355348300009
dc.identifier.urihttp://hdl.handle.net/10023/13118
dc.description.abstractIt is shown that the two common notions of topological continuity for preference preorders, which require closed contour sets and a closed graph respectively, are equivalent even when completeness is not assumed, provided that the domain is a normed linear space or a topological group and the preorder is additive.
dc.language.isoeng
dc.relation.ispartofJournal of Mathematical Economicsen
dc.rights© 2015. Elsevier Ltd. All rights reserved. This is the author’s version of a work that was accepted for publication in Journal of Mathematical Economics. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Mathematical Economics, 58, 11 April 2015 DOI 10.1016/j.jmateco.2015.03.009en
dc.subjectIncompletenessen
dc.subjectContinuityen
dc.subjectHemicontinuityen
dc.subjectAddiviityen
dc.subjectIndependenceen
dc.subjectHomotheticityen
dc.subjectQA Mathematicsen
dc.subject.lccQAen
dc.title(Hemi)Continuity of additive preference preordersen
dc.typeJournal articleen
dc.description.versionPostprinten
dc.contributor.institutionUniversity of St Andrews.School of Economics and Financeen
dc.identifier.doihttps://doi.org/10.1016/j.jmateco.2015.03.009
dc.description.statusPeer revieweden
dc.date.embargoedUntil2018-04-11


This item appears in the following Collection(s)

Show simple item record