St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Using self-organizing maps to classify humpback whale song units and quantify their similarity

Thumbnail
View/Open
Allen_2017_Self_organizing_JASA_AAM.pdf (1.266Mb)
Date
10/10/2017
Author
Allen, Jenny A.
Murray, Anita
Noad, Michael J.
Dunlop, Rebecca A.
Garland, Ellen Clare
Funder
The Royal Society
Grant ID
NF140667
Keywords
Animal communication
Sequence analysis
Neural networks
Humpback whale
GC Oceanography
QA75 Electronic computers. Computer science
QH301 Biology
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Classification of vocal signals can be undertaken using a wide variety of qualitative and quantitative techniques. Using east Australian humpback whale song from 2002-2014, a subset of vocal signals were acoustically measured and then classified using a self-organizing map (SOM). The SOM created 1) an acoustic dictionary of units representing the song’s repertoire, and 2) Cartesian distance measurements among all unit types (SOM nodes). Utilizing the SOM dictionary as a guide, additional song recordings from east Australia were rapidly (manually) transcribed. To assess the similarity in song sequences, the Cartesian distance output from the SOM was applied in Levenshtein distance similarity analyses as a weighting factor to better incorporate unit similarity in the calculation (previously a qualitative process). SOMs provide a more robust and repeatable means of categorizing acoustic signals along with a clear quantitative measurement of sound type similarity based on acoustic features. This method can be utilized for a wide variety of acoustic databases especially those containing very large datasets, and be applied across the vocalization research community to help address concerns surrounding inconsistency in manual classification.
Citation
Allen , J A , Murray , A , Noad , M J , Dunlop , R A & Garland , E C 2017 , ' Using self-organizing maps to classify humpback whale song units and quantify their similarity ' , Journal of the Acoustical Society of America , vol. 142 , no. 4 , pp. 1943-1952 . https://doi.org/10.1121/1.4982040
Publication
Journal of the Acoustical Society of America
Status
Peer reviewed
DOI
https://doi.org/10.1121/1.4982040
ISSN
0001-4966
Type
Journal article
Rights
© 2017, Acoustical Society of America. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at http://dx.doi.org/10.1121/1.4982040
Description
E.C.G. was funded by a Royal Society Newton International Fellowship.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/13109

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter