Show simple item record

Files in this item


Item metadata

dc.contributor.authorSunko, Veronika
dc.contributor.authorRosner, H.
dc.contributor.authorKushwaha, P.
dc.contributor.authorKhim, S.
dc.contributor.authorMazzola, F.
dc.contributor.authorBawden, L.
dc.contributor.authorClark, O. J.
dc.contributor.authorRiley, J. M.
dc.contributor.authorKasinathan, D.
dc.contributor.authorHaverkort, M. W.
dc.contributor.authorKim, T. K.
dc.contributor.authorHoesch, M.
dc.contributor.authorFujii, J.
dc.contributor.authorVobornik, I.
dc.contributor.authorMackenzie, A. P.
dc.contributor.authorKing, P. D.
dc.identifier.citationSunko , V , Rosner , H , Kushwaha , P , Khim , S , Mazzola , F , Bawden , L , Clark , O J , Riley , J M , Kasinathan , D , Haverkort , M W , Kim , T K , Hoesch , M , Fujii , J , Vobornik , I , Mackenzie , A P & King , P D 2017 , ' Maximal Rashba-like spin splitting via kinetic energy-coupled inversion symmetry breaking ' , Nature , vol. 549 , no. 7673 , pp. 492-496 .
dc.identifier.otherPURE: 250622527
dc.identifier.otherPURE UUID: 01838463-9f40-4a23-8b38-5d7df2493456
dc.identifier.otherWOS: 000411930000044
dc.identifier.otherScopus: 85042285705
dc.descriptionFunding: European Research Council (through the QUESTDO project), Royal Society, the Engineering and Physical Sciences Research Council, UK (Grant No. EP/I031014/1). VS, LB, OJC and JMR acknowledge EPSRC for PhD studentship support through grant Nos. EP/L015110/1, EP/G03673X/1, EP/K503162/1, and EP/L505079/1.en
dc.description.abstractEngineering and enhancing the breaking of inversion symmetry in solids—that is, allowing electrons to differentiate between ‘up’ and ‘down’—is a key goal in condensed-matter physics and materials science because it can be used to stabilize states that are of fundamental interest and also have potential practical applications. Examples include improved ferroelectrics for memory devices and materials that host Majorana zero modes for quantum computing1, 2. Although inversion symmetry is naturally broken in several crystalline environments, such as at surfaces and interfaces, maximizing the influence of this effect on the electronic states of interest remains a challenge. Here we present a mechanism for realizing a much larger coupling of inversion-symmetry breaking to itinerant surface electrons than is typically achieved. The key element is a pronounced asymmetry of surface hopping energies—that is, a kinetic-energy-coupled inversion-symmetry breaking, the energy scale of which is a substantial fraction of the bandwidth. Using spin- and angle-resolved photoemission spectroscopy, we demonstrate that such a strong inversion-symmetry breaking, when combined with spin–orbit interactions, can mediate Rashba-like3, 4 spin splittings that are much larger than would typically be expected. The energy scale of the inversion-symmetry breaking that we achieve is so large that the spin splitting in the CoO2- and RhO2-derived surface states of delafossite oxides becomes controlled by the full atomic spin–orbit coupling of the 3d and 4d transition metals, resulting in some of the largest known Rashba-like3, 4 spin splittings. The core structural building blocks that facilitate the bandwidth-scaled inversion-symmetry breaking are common to numerous materials. Our findings therefore provide opportunities for creating spin-textured states and suggest routes to interfacial control of inversion-symmetry breaking in designer heterostructures of oxides and other material classes.
dc.rights© 2017 the Author(s). This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at
dc.subjectQC Physicsen
dc.subjectTK Electrical engineering. Electronics Nuclear engineeringen
dc.titleMaximal Rashba-like spin splitting via kinetic energy-coupled inversion symmetry breakingen
dc.typeJournal articleen
dc.contributor.institutionUniversity of St Andrews.School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews.Condensed Matter Physicsen
dc.description.statusPeer revieweden

This item appears in the following Collection(s)

Show simple item record