Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorBlättler, Clara
dc.contributor.authorClaire, Mark
dc.contributor.authorPrave, Anthony Robert
dc.contributor.authorKirsimäe, K.
dc.contributor.authorHiggins, J. A.
dc.contributor.authorMedvedev, P. V.
dc.contributor.authorRomashkin, A. E.
dc.contributor.authorRychanchik, D. V.
dc.contributor.authorZerkle, Aubrey Lea
dc.contributor.authorPaiste, K.
dc.contributor.authorKreitsmann, T.
dc.contributor.authorMillar, I. L.
dc.contributor.authorHayles, J. A.
dc.contributor.authorBao, H.
dc.contributor.authorTurchyn, A. V.
dc.contributor.authorWarke, Matthew Robert
dc.contributor.authorLepland, A.
dc.date.accessioned2018-03-23T11:30:05Z
dc.date.available2018-03-23T11:30:05Z
dc.date.issued2018-04-20
dc.identifier.citationBlättler , C , Claire , M , Prave , A R , Kirsimäe , K , Higgins , J A , Medvedev , P V , Romashkin , A E , Rychanchik , D V , Zerkle , A L , Paiste , K , Kreitsmann , T , Millar , I L , Hayles , J A , Bao , H , Turchyn , A V , Warke , M R & Lepland , A 2018 , ' Two-billion-year-old evaporites capture Earth's great oxidation ' , Science , vol. 360 , no. 6386 , pp. 320-323 . https://doi.org/10.1126/science.aar2687en
dc.identifier.issn0036-8075
dc.identifier.otherPURE: 252070717
dc.identifier.otherPURE UUID: e8a141cf-d257-4529-8037-69c4a99852c2
dc.identifier.otherPubMed: 29567810
dc.identifier.otherScopus: 85044455051
dc.identifier.otherORCID: /0000-0001-9518-089X/work/42954175
dc.identifier.otherORCID: /0000-0001-9830-0383/work/42954190
dc.identifier.otherORCID: /0000-0003-2324-1619/work/60427926
dc.identifier.otherWOS: 000430396600045
dc.identifier.otherORCID: /0000-0002-4614-3774/work/64033675
dc.identifier.urihttps://hdl.handle.net/10023/13006
dc.descriptionFunding sources: Simons Foundation (SCOL 339006 to C.L.B.), European Research Council (ERC Horizon 2020 grant 678812 to M.C.), Research Council of Norway (RCN Centres of Excellence funding scheme project 223259 to K.P. and A.L.), Estonian Science Agency (PUT696 to K.K., A.L., K.P., T.K.).en
dc.description.abstractMajor changes in atmospheric and ocean chemistry occurred in the Paleoproterozoic Era (2.5–1.6 billion years ago). Increasing oxidation dramatically changed Earth’s surface, but few quantitative constraints exist on this important transition. This study describes the sedimentology, mineralogy, and geochemistry of a remarkably preserved two-billion-year-old and ~800 meter-thick evaporite succession from the Onega Basin in Russian Karelia. The deposit consists of a basal unit dominated by halite (~100 m) followed by anhydrite-magnesite (~500 m) and dolomite-magnesite (~200 m) dominated units. The evaporite minerals robustly constraint marine sulfate concentrations to at least 10 millimoles per kilogram of water, representing an oxidant reservoir equivalent to over 20% of the modern ocean-atmosphere oxidizing capacity. These results show that substantial amounts of surface oxidant accumulated during this critical transition in Earth’s oxygenation.
dc.format.extent5
dc.language.isoeng
dc.relation.ispartofScienceen
dc.rights© 2018 he Author(s). This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1126/science.aar2687en
dc.subjectGE Environmental Sciencesen
dc.subjectQE Geologyen
dc.subjectDASen
dc.subjectBDCen
dc.subjectR2Cen
dc.subjectSDG 14 - Life Below Wateren
dc.subject.lccGEen
dc.subject.lccQEen
dc.titleTwo-billion-year-old evaporites capture Earth's great oxidationen
dc.typeJournal articleen
dc.contributor.sponsorEuropean Research Councilen
dc.description.versionPostprinten
dc.contributor.institutionUniversity of St Andrews. School of Earth & Environmental Sciencesen
dc.contributor.institutionUniversity of St Andrews. St Andrews Centre for Exoplanet Scienceen
dc.contributor.institutionUniversity of St Andrews. St Andrews Isotope Geochemistryen
dc.contributor.institutionUniversity of St Andrews. Marine Alliance for Science & Technology Scotlanden
dc.contributor.institutionUniversity of St Andrews. Scottish Oceans Instituteen
dc.contributor.institutionUniversity of St Andrews. St Andrews Sustainability Instituteen
dc.identifier.doihttps://doi.org/10.1126/science.aar2687
dc.description.statusPeer revieweden
dc.date.embargoedUntil2018-03-22
dc.identifier.grantnumber678812en


This item appears in the following Collection(s)

Show simple item record