St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering

Thumbnail
View/Open
Science_revised_2017.pdf (1.506Mb)
Date
23/06/2017
Author
Tsakmakidis, K. L.
Shen, L.
Schulz, S. A.
Zheng, X.
Upham, J.
Deng, X.
Altug, H.
Vakakis, A. F.
Boyd, R. W.
Keywords
QC Physics
TK Electrical engineering. Electronics Nuclear engineering
NDAS
BDC
R2C
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
A century-old tenet in physics and engineering asserts that any type of system, having bandwidth Δω, can interact with a wave over only a constrained time period Δt inversely proportional to the bandwidth (Δt·Δω ~ 2π). This law severely limits the generic capabilities of all types of resonant and wave-guiding systems in photonics, cavity quantum electrodynamics and optomechanics, acoustics, continuum mechanics, and atomic and optical physics but is thought to be completely fundamental, arising from basic Fourier reciprocity. We propose that this “fundamental” limit can be overcome in systems where Lorentz reciprocity is broken. As a system becomes more asymmetric in its transport properties, the degree to which the limit can be surpassed becomes greater. By way of example, we theoretically demonstrate how, in an astutely designed magnetized semiconductor heterostructure, the above limit can be exceeded by orders of magnitude by using realistic material parameters. Our findings revise prevailing paradigms for linear, time-invariant resonant systems, challenging the doctrine that high-quality resonances must invariably be narrowband and providing the possibility of developing devices with unprecedentedly high time-bandwidth performance.
Citation
Tsakmakidis , K L , Shen , L , Schulz , S A , Zheng , X , Upham , J , Deng , X , Altug , H , Vakakis , A F & Boyd , R W 2017 , ' Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering ' , Science , vol. 356 , no. 6344 , pp. 1260-1264 . https://doi.org/10.1126/science.aam6662
Publication
Science
Status
Peer reviewed
DOI
https://doi.org/10.1126/science.aam6662
ISSN
0036-8075
Type
Journal article
Rights
© 2017, the Author(s). This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1126/science.aam6662
Description
K.L.T. gratefully acknowledges the support of the Eugen Lommel fellowship of the Max Planck Institute for the Science of Light (Erlangen) and R.W.B. the Canada Excellence Research Chairs Program. H.A. and K.L.T. supported by European Commission Horizon 2020 (grant no. FETOPEN-737071), ULTRA-CHIRAL Project. L.S. supported by National Natural Science Foundation of China grant no. 61372005 and key project grant no. 41331070
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/12972

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter