St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Using agent-based models to understand the role of individuals in the song evolution of humpback whales (Megaptera novaeangliae)

Thumbnail
View/Open
McLoughlin_2018_MS_Agent_basedmodels_CC.pdf (1005.Kb)
Date
2018
Author
Mcloughlin, Michael
Lamoni, Luca
Garland, Ellen C.
Ingram, Simon
Kirke, Alexis
Noad, Michael J.
Rendell, Luke
Miranda, Eduardo
Keywords
Agent-based model
Humpback whale
Song
Song evolution
Vocal learning
QH301 Biology
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Male humpback whales produce hierarchically structured songs, primarily during the breeding season. These songs gradually change over the course of the breeding season, and are generally population specific. However, instances have been recorded of more rapid song changes where the song of a population can be replaced by the song of an adjacent population. The mechanisms that drive these changes are not currently understood, and difficulties in tracking individual whales over long migratory routes mean field studies to understand these mechanisms are not feasible. In order to help understand the mechanisms that drive these song changes, we present here a spatially explicit agent-based model inspired by methods used in computer music research. We model the migratory patterns of humpback whales, a simple song learning and production method coupled with sound transmission loss, and how often singing occurs during these migratory cycles. This model is then extended to include learning biases that may be responsible for driving changes in the song, such as a bias towards novel song, production errors, and the coupling of novel song bias and production errors. While none of the methods showed population song replacement, our model shows that shared feeding grounds where conspecifics are able to mix provides key opportunities for cultural transmission, and production errors facilitated gradually changing songs. Our results point towards other learning biases being necessary in order for population song replacement to occur.
Citation
Mcloughlin , M , Lamoni , L , Garland , E C , Ingram , S , Kirke , A , Noad , M J , Rendell , L & Miranda , E 2018 , ' Using agent-based models to understand the role of individuals in the song evolution of humpback whales ( Megaptera novaeangliae ) ' , Music & Science , vol. 1 . https://doi.org/10.1177/2059204318757021
Publication
Music & Science
Status
Peer reviewed
DOI
https://doi.org/10.1177/2059204318757021
ISSN
2059-2043
Type
Journal article
Rights
© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/12929

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter