Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorAntolin, Patrick
dc.contributor.authorSchmit, Don
dc.contributor.authorPereira, Tiago M. D.
dc.contributor.authorDe Pontieu, Bart
dc.contributor.authorDe Moortel, Ineke
dc.date.accessioned2018-03-08T15:30:06Z
dc.date.available2018-03-08T15:30:06Z
dc.date.issued2018-03-23
dc.identifier.citationAntolin , P , Schmit , D , Pereira , T M D , De Pontieu , B & De Moortel , I 2018 , ' Transverse wave induced Kelvin-Helmholtz rolls in spicules ' , Astrophysical Journal , vol. 856 , no. 1 , 44 . https://doi.org/10.3847/1538-4357/aab34fen
dc.identifier.issn0004-637X
dc.identifier.otherPURE: 252493078
dc.identifier.otherPURE UUID: 81af849b-1b91-48d9-97de-928511b9750b
dc.identifier.otherBibCode: 2018arXiv180300821A
dc.identifier.otherScopus: 85044764086
dc.identifier.otherORCID: /0000-0002-1452-9330/work/43387945
dc.identifier.otherWOS: 000428306500001
dc.identifier.urihttps://hdl.handle.net/10023/12880
dc.descriptionThis research has received funding from the UK Science and Technology Facilities Council (Consolidated Grant ST/K000950/1) and the European Union Horizon 2020 research and innovation programme (grant agreement No. 647214).en
dc.description.abstractIn addition to their jet-like dynamic behaviour, spicules usually exhibit strong transverse speeds, multi-stranded structure and heating from chromospheric to transition region temperatures. In this work we first analyse Hinode & IRIS observations of spicules and find different behaviours in terms of their Doppler velocity evolution and collective motion of their sub-structure. Some have a Doppler shift sign change that is rather fixed along the spicule axis, and lack coherence in the oscillatory motion of strand-like structure, matching rotation models or long wavelength torsional Alfvén waves. Others exhibit a Doppler shift sign change at maximum displacement and coherent motion of their strands, suggesting a collective MHD wave. By comparing with an idealised 3D MHD simulation combined with radiative transfer modelling, we analyse the role of transverse MHD waves and associated instabilities in spicule-like features. We find that Transverse Wave Induced Kelvin-Helmholtz (TWIKH) rolls lead to coherence of strand-like structure in imaging and spectral maps, as seen in some observations. The rapid transverse dynamics and the density and temperature gradients at the spicule boundary lead to ring-shaped Mg II k and Ca II H source functions in the transverse cross-section, potentially allowing IRIS to capture the KHI dynamics. Twists and currents propagate along the spicule at Alfvénic speeds, and the temperature variations within TWIKH rolls produce sudden appearance/disappearance of strands seen in Doppler velocity and in Ca II H intensity. However, only a mild intensity increase in higher temperature lines is obtained, suggesting there is an additional heating mechanism at work in spicules.
dc.language.isoeng
dc.relation.ispartofAstrophysical Journalen
dc.rights© 2018, American Astronomical Society. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.3847/1538-4357/aab34fen
dc.subjectMagnetohydrodynamics (MHD)en
dc.subjectInstabilitiesen
dc.subjectSun: activityen
dc.subjectSun: coronaen
dc.subjectSun: chromosphereen
dc.subjectSun: oscillationsen
dc.subjectQB Astronomyen
dc.subjectQC Physicsen
dc.subjectNDASen
dc.subject.lccQBen
dc.subject.lccQCen
dc.titleTransverse wave induced Kelvin-Helmholtz rolls in spiculesen
dc.typeJournal articleen
dc.contributor.sponsorScience & Technology Facilities Councilen
dc.contributor.sponsorScience & Technology Facilities Councilen
dc.contributor.sponsorEuropean Research Councilen
dc.description.versionPostprinten
dc.contributor.institutionUniversity of St Andrews. Applied Mathematicsen
dc.contributor.institutionUniversity of St Andrews. School of Mathematics and Statisticsen
dc.identifier.doihttps://doi.org/10.3847/1538-4357/aab34f
dc.description.statusPeer revieweden
dc.identifier.urlhttp://adsabs.harvard.edu/abs/2018arXiv180300821Aen
dc.identifier.grantnumberST/N000609/1en
dc.identifier.grantnumberST/K000950/1en
dc.identifier.grantnumber647214en


This item appears in the following Collection(s)

Show simple item record