Multivalent cation crosslinking suppresses highly energetic graphene oxide’s flammability
View/ Open
Date
16/03/2017Metadata
Show full item recordAltmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Graphene oxide (GO), a common intermediate for making graphene-like materials from graphite, was recently found to possess an explosive fire-hazard that can jeopardize the GO’s large-scale production and wide applications. This work reports a simple and facile method to cross-link the GO with Al3+ cations, in one step, into a freestanding flexible membrane. This inorganic membrane resists in-air burning on an open-flame, at which non-cross-linked GO was burnt out within ~5 seconds. All characterization data suggested that the in-situ “epoxy ring opening” reactions on GO surface facilitated the cross-linking, which elucidated a new mechanism for the generalized inorganic polymerization. With the much improved thermal- and water-stabilities, the cross-linked GO-film can help to advance high-temperature fuel-cells, electronic packaging, etc. as one of the long-sought inorganic polymers known to date.
Citation
Turgut , H , Tian , Z R , Yu , F & Zhou , W 2017 , ' Multivalent cation crosslinking suppresses highly energetic graphene oxide’s flammability ' , Journal of Physical Chemistry C , vol. 121 , no. 10 , pp. 5829-5835 . https://doi.org/10.1021/acs.jpcc.6b13043
Publication
Journal of Physical Chemistry C
Status
Peer reviewed
ISSN
1932-7447Type
Journal article
Rights
Copyright © 2017 American Chemical Society. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at: https://doi.org/10.1021/acs.jpcc.6b13043
Description
The authors acknowledges National Science Foundation- Experimental Program to Stimulate Competitive Research (NSF-EPSCoR) for partial support, Prof. S. Yu’s lab for the micro-Raman experiments, and Dr. Jingyi Chen’s lab for the TGA study.Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.