St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Diversity from genes to ecosystems : a unifying framework to study variation across biological metrics and scales

Thumbnail
View/Open
Gaggiotti_2018_EA_Biologicalmetrics_CC.pdf (1.461Mb)
Date
17/07/2018
Author
Gaggiotti, Oscar E.
Chao, Anne
Peres-Neto, Pedro
Chiu, Chun-Huo
Edwards, Christine
Fortin, Marie-Josée
Jost, Lou
Richards, Christopher
Selkoe, Kimberly
Keywords
Biodiversity indices
Hill numbers
Species diversity
Genetic diversity
Hierarchical spatial structure
GE Environmental Sciences
QH301 Biology
QH426 Genetics
DAS
BDC
R2C
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Biological diversity is a key concept in the life sciences and plays a fundamental role in many ecological and evolutionary processes. Although biodiversity is inherently a hierarchical concept covering different levels of organisation (genes, population, species, ecological communities and ecosystems), a diversity index that behaves consistently across these different levels has so far been lacking, hindering the development of truly integrative biodiversity studies. To fill this important knowledge gap we present a unifying framework for the measurement of biodiversity across hierarchical levels of organisation. Our weighted, information-based decomposition framework is based on a Hill number of order q = 1, which weights all elements in proportion to their frequency and leads to diversity measures based on Shannon’s entropy. We investigated the numerical behaviour of our approach with simulations and showed that it can accurately describe complex spatial hierarchical structures. To demonstrate the intuitive and straightforward interpretation of our diversity measures in terms of effective number of components (alleles, species, etc.) we applied the framework to a real dataset on coral reef biodiversity. We expect our framework will have multiple applications covering the fields of conservation biology, community genetics, and eco-evolutionary dynamics.
Citation
Gaggiotti , O E , Chao , A , Peres-Neto , P , Chiu , C-H , Edwards , C , Fortin , M-J , Jost , L , Richards , C & Selkoe , K 2018 , ' Diversity from genes to ecosystems : a unifying framework to study variation across biological metrics and scales ' , Evolutionary Applications , vol. 11 , no. 7 , pp. 1176-1193 . https://doi.org/10.1111/eva.12593
Publication
Evolutionary Applications
Status
Peer reviewed
DOI
https://doi.org/10.1111/eva.12593
ISSN
1752-4563
Type
Journal article
Rights
© 2018 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Description
This work was assisted through participation in “Next Generation Genetic Monitoring” Investigative Workshop at the National Institute for Mathematical and Biological Synthesis, sponsored by the National Science Foundation through NSF Award #DBI-1300426, with additional support from The University of Tennessee, Knoxville. Hawaiian fish community data were provided by the NOAA Pacific Islands Fisheries Science Center's Coral Reef Ecosystem Division (CRED) with funding from NOAA Coral Reef Conservation Program. O.E.G. was supported by the Marine Alliance for Science and Technology for Scotland (MASTS). A. C. and C. H. C. were supported by the Ministry of Science and Technology, Taiwan. P.P.-N. was supported by a Canada Research Chair in Spatial Modelling and Biodiversity. K.A.S. was supported by National Science Foundation (BioOCE Award Number 1260169) and the National Center for Ecological Analysis and Synthesis. All data used in this manuscript are available in DRYAD (https://doi.org/dx.doi.org/10.5061/dryad.qm288) and BCO-DMO (http://www.bco-dmo.org/project/552879).
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/12756

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter