St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ultrafast Electronic Energy Transfer in an orthogonal molecular dyad

Thumbnail
View/Open
Wiebeler_2017_Ultrafast_JPCL_AAM.pdf (1.899Mb)
Date
02/03/2017
Author
Wiebeler, Christian
Plasser, Felix
Hedley, Gordon J.
Ruseckas, Arvydas
Samuel, Ifor D. W.
Schumacher, Stefan
Funder
EPSRC
European Research Council
Grant ID
ep/l017008/1
Keywords
Photophysics
Spectrum stimulation
Ultrafast dynamics
Time-dependent DFT
Trajectory surface hopping
QC Physics
T Technology
DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Understanding electronic energy transfer (EET) is an important ingredient in the development of artificial photosynthetic systems and photovoltaic technologies. Although EET is at the heart of these applications and crucially influences their light-harvesting efficiency, the nature of EET over short distances for covalently bound donor and acceptor units is often not well understood. Here we investigate EET in an orthogonal molecular dyad (BODT4) in which simple models fail to explain the very origin of EET. Based on nonadiabatic ab initio molecular dynamics calculations and fluorescence depolarization experiments we gain detailed microscopic insights into the ultrafast electro-vibrational dynamics following photoexcitation. Our analysis offers molecular-level insights into these processes and reveals that it takes place on timescales ≲ 100 fs and occurs through an intermediate charge-transfer state.
Citation
Wiebeler , C , Plasser , F , Hedley , G J , Ruseckas , A , Samuel , I D W & Schumacher , S 2017 , ' Ultrafast Electronic Energy Transfer in an orthogonal molecular dyad ' , Journal of Physical Chemistry Letters , vol. 8 , no. 5 , pp. 1086-1092 . https://doi.org/10.1021/acs.jpclett.7b00089
Publication
Journal of Physical Chemistry Letters
Status
Peer reviewed
DOI
https://doi.org/10.1021/acs.jpclett.7b00089
ISSN
1948-7185
Type
Journal article
Rights
© 2017, American Chemical Society. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at pubs.acs.org / https://doi.org/10.1021/acs.jpclett.7b00089
Description
The St Andrews group acknowledges support from the European Research Council (grant number 321305) and the Engineering and Physical Sciences Research Council (grant EP/L017008/1). I.D.W.S. also acknowledges support from a Royal Society Wolfson Research Merit Award.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/12741

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter