Show simple item record

Files in this item


Item metadata

dc.contributor.authorSiegmund, Bernhard
dc.contributor.authorSajjad, Muhammad Tariq
dc.contributor.authorWidmer, Johannes
dc.contributor.authorRay, Debdutta
dc.contributor.authorKoerner, Christian
dc.contributor.authorRiede, Moritz
dc.contributor.authorLeo, Karl
dc.contributor.authorSamuel, Ifor David William
dc.contributor.authorVandewal, Koen
dc.identifier.citationSiegmund , B , Sajjad , M T , Widmer , J , Ray , D , Koerner , C , Riede , M , Leo , K , Samuel , I D W & Vandewal , K 2017 , ' Exciton diffusion length and charge extraction yield in organic bilayer solar cells ' , Advanced Materials , vol. 29 , no. 12 , 1604424 .
dc.identifier.otherPURE: 248655828
dc.identifier.otherPURE UUID: 7d26afb6-d702-4190-a9a6-7ce03b5d416f
dc.identifier.otherScopus: 85011423395
dc.identifier.otherWOS: 000396998800003
dc.descriptionThe authors thank the German BMBF for funding within the scope of the projects InnoProfile 2.2 (03IPT602X) and MEDOS (03EK3503A) as well as the European Commission within the scope of the Career Integration Grant (FP7, MSCA, 630864). I.D.W.S. and M.T.S. acknowledge support from the European Research Council (grant number 321305) and from EPSRC (grant number EP/L017008/1). I.D.W.S. also acknowledges a Royal Society Wolfson Research Merit Award. K.L. is a fellow of the Canadian Institute for Advanced Research (CIFAR). The research data supporting this publication can be accessed at
dc.description.abstractA method for resolving the diffusion length of excitons and the extraction yield of charge carriers is presented based on the performance of organic bilayer solar cells and careful modeling. The technique uses a simultaneous variation of the absorber thickness and the excitation wavelength. Rigorously differing solar cell structures as well as independent photoluminescence quenching measurements give consistent results.
dc.relation.ispartofAdvanced Materialsen
dc.rights© 2017, Wiley-VCH, Verlag GmbH & Co, KGaA, Weinheim. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at /
dc.subjectExciton diffusion lengthen
dc.subjectCharge carrier extractionen
dc.subjectOrganic photovoltaicsen
dc.subjectPhotocurrent modellingen
dc.subjectQC Physicsen
dc.subjectTK Electrical engineering. Electronics Nuclear engineeringen
dc.titleExciton diffusion length and charge extraction yield in organic bilayer solar cellsen
dc.typeJournal articleen
dc.contributor.institutionUniversity of St Andrews.School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews.Condensed Matter Physicsen
dc.description.statusPeer revieweden

This item appears in the following Collection(s)

Show simple item record