St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Disc fragmentation rarely forms planetary-mass objects

Thumbnail
View/Open
Rice_2015_Disc_fragmentation_MNRAS_1940.pdf (351.8Kb)
Date
01/12/2015
Author
Rice, Ken
Lopez, Eric
Forgan, Duncan
Biller, Beth
Funder
European Commission
European Research Council
Grant ID
Keywords
Planets and satellites: formation
Planets and satellites: general
Brown dwarfs
Stars: formation
QB Astronomy
QC Physics
3rd-NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
It is now reasonably clear that disc fragmentation can only operate in the outer parts of protostellar discs (r > 50 au). It is also expected that any object that forms via disc fragmentation will have an initial mass greater than that of Jupiter. However, whether or not such a process actually operates, or can play a significant role in the formation of planetary-mass objects, is still unclear. We do have a few examples of directly imaged objects that may have formed in this way, but we have yet to constrain how often disc fragmentation may actually form such objects. What we want to consider here is whether or not we can constrain the likely population of planetary-mass objects formed via disc fragmentation by considering how a population of objects at large radii (a > 50) au - if they do exist - would evolve under perturbations from more distant stellar companions. We find that there is a specific region of parameter space to which such objects would bes cattered and show that the known exoplanets in that region have properties more consistent with that of the bulk exoplanet population, than with having been formed via disc fragmentation at large radii. Along with the scarcity of directly imaged objects at large radii, our results provide a similar, but independent, constraint on the frequency of objects formed via disc fragmentation.
Citation
Rice , K , Lopez , E , Forgan , D & Biller , B 2015 , ' Disc fragmentation rarely forms planetary-mass objects ' , Monthly Notices of the Royal Astronomical Society , vol. 454 , no. 2 , pp. 1940-1947 . https://doi.org/10.1093/mnras/stv1997
Publication
Monthly Notices of the Royal Astronomical Society
Status
Peer reviewed
DOI
https://doi.org/10.1093/mnras/stv1997
ISSN
0035-8711
Type
Journal article
Rights
© 2015, the Author(s). This work has been made available online in accordance with the publisher’s policies. This is the final published version of the work, which was originally published at https://doi.org/10.1093/mnras/stv1997
Description
KR gratefully acknowledges support from STFC grant ST/M001229/1. The research leading to these results also received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement number 313014 (ETAEARTH). DF grateful acknowledges support from the ECOGAL ERC advanced grant.
Collections
  • University of St Andrews Research
URL
http://adsabs.harvard.edu/abs/2015MNRAS.454.1940R
URI
http://hdl.handle.net/10023/12611

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter