St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Towards a population synthesis model of self-gravitating disc fragmentation and tidal downsizing II : the effect of fragment-fragment interactions

Thumbnail
View/Open
Forgan_2017_Towards_population_MNRAS_5036.pdf (2.310Mb)
Date
03/2018
Author
Forgan, D. H.
Hall, C.
Meru, F.
Rice, W. K. M.
Keywords
Accretion
Accretion discs
Methods: numerical
Methods: statistical
Planets and satellites: formation
Stars: formation
QB Astronomy
QC Physics
NDAS
Metadata
Show full item record
Abstract
It is likely that most protostellar systems undergo a brief phase where the protostellar disc is self-gravitating. If these discs are prone to fragmentation, then they are able to rapidly form objects that are initially of several Jupiter masses and larger. The fate of these disc fragments (and the fate of planetary bodies formed afterwards via coreaccretion) depends sensitively not only on the fragment's interaction with the disc, but also with its neighbouring fragments. We return to and revise our population synthesis model of self-gravitating disc fragmentation and tidal downsizing. Amongst other improvements, the model now directly incorporates fragment-fragment interactions while the disc is still present. We find that fragment-fragment scattering dominates the orbital evolution, even when we enforce rapid migration and inefficient gap formation. Compared to our previous model, we see a small increase in the number of terrestrial-type objects being formed, although their survival under tidal evolution is at best unclear. We also see evidence for disrupted fragments with evolved grain populations- this is circumstantial evidence for the formation of planetesimal belts, a phenomenon not seen in runs where fragment-fragment interactions are ignored. In spite of intense dynamical evolution, our population is dominated by massive giant planets and brown dwarfs at large semimajor axis, which direct imaging surveys should, but only rarely, detect. Finally, disc fragmentation is shown to be an efficient manufacturer of free-floating planetary mass objects, and the typical multiplicity of systems formed via gravitational instability will be low.
Citation
Forgan , D H , Hall , C , Meru , F & Rice , W K M 2018 , ' Towards a population synthesis model of self-gravitating disc fragmentation and tidal downsizing II : the effect of fragment-fragment interactions ' , Monthly Notices of the Royal Astronomical Society , vol. 474 , no. 4 , pp. 5036-5048 . https://doi.org/10.1093/mnras/stx2870
Publication
Monthly Notices of the Royal Astronomical Society
Status
Peer reviewed
DOI
https://doi.org/10.1093/mnras/stx2870
ISSN
0035-8711
Type
Journal article
Rights
© 2017, the Author(s). This work has been made available online in accordance with the publisher’s policies. This is the final published version of the work, which was originally published at https://doi.org/10.1093/mnras/stx2870
Description
DHF gratefully acknowledges support from the ECOGAL project, grant agreement 291227, funded by the European Research Council (ERC) under ERC-2011-ADG. This project has received funding from ERC under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 681601). The research leading to these results also received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement number 313014 (ETAEARTH). WKMR acknowledges the support of the UK Science and Technology Facilities Council through grant number ST/M001229/1. FM acknowledges support from The Leverhulme Trust and the Isaac Newton Trust.
Collections
  • University of St Andrews Research
URL
http://adsabs.harvard.edu/abs/2018MNRAS.474.5036F
URI
http://hdl.handle.net/10023/12609

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter