St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Tuning charge carrier transport and optical birefringence in liquid-crystalline thin films : a new design space for organic light-emitting diodes

Thumbnail
View/Open
Keum_2018_Tuning_charge_SciRep_699_CC.pdf (2.527Mb)
Date
15/01/2018
Author
Keum, Changmin
Liu, Shiyi
Al-Shadeedi, Akram
Kaphle, Vikash
Koen Callens, Michiel
Han, Lu
Neyts, Kristiaan
Zhao, Hongping
Gather, Malte Christian
Bunge, Scott D.
Twieg, Robert J.
Jakli, Antal
Lüssem, Björn
Keywords
QC Physics
T Technology
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Liquid-crystalline organic semiconductors exhibit unique properties that make them highly interesting for organic optoelectronic applications. Their optical and electrical anisotropies and the possibility to control the alignment of the liquid-crystalline semiconductor allow not only to optimize charge carrier transport, but to tune the optical property of organic thin-film devices as well. In this study, the molecular orientation in a liquid-crystalline semiconductor film is tuned by a novel blading process as well as by different annealing protocols. The altered alignment is verified by cross-polarized optical microscopy and spectroscopic ellipsometry. It is shown that a change in alignment of the liquid-crystalline semiconductor improves charge transport in single charge carrier devices profoundly. Comparing the current-voltage characteristics of single charge carrier devices with simulations shows an excellent agreement and from this an in-depth understanding of single charge carrier transport in two-terminal devices is obtained. Finally, p-i-n type organic light-emitting diodes (OLEDs) compatible with vacuum processing techniques used in state-of-the-art OLEDs are demonstrated employing liquid-crystalline host matrix in the emission layer.
Citation
Keum , C , Liu , S , Al-Shadeedi , A , Kaphle , V , Koen Callens , M , Han , L , Neyts , K , Zhao , H , Gather , M C , Bunge , S D , Twieg , R J , Jakli , A & Lüssem , B 2018 , ' Tuning charge carrier transport and optical birefringence in liquid-crystalline thin films : a new design space for organic light-emitting diodes ' , Scientific Reports , vol. 8 , 699 . https://doi.org/10.1038/s41598-018-19157-9
Publication
Scientific Reports
Status
Peer reviewed
DOI
https://doi.org/10.1038/s41598-018-19157-9
ISSN
2045-2322
Type
Journal article
Rights
2018 Copyright the Authors. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
Description
B.L. acknowledges financial support from the Binational Science Foundation under grant No 2014396 and from the National Science Foundation under grant No 1639073. C.K. acknowledges funding from the Kent State University Internal Post-Doctoral Competition. M.C.K. acknowledges funding from the Belgian Agentschap voor innovatie door wetenschap en techniek under grant No IWT 131498.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/12592

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter