St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Electrical pumping and tuning of exciton-polaritons in carbon nanotube microcavities

Thumbnail
View/Open
manuscript.pdf (897.2Kb)
Suppl_Info.pdf (5.982Mb)
Date
09/2017
Author
Graf, Arko
Held, Martin
Zakharko, Yuriy
Tropf, Laura Christine
Gather, Malte Christian
Zaumseil, Jana
Funder
European Research Council
Grant ID
640012
Keywords
QC Physics
TK Electrical engineering. Electronics Nuclear engineering
DAS
BDC
R2C
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Exciton-polaritons are hybrid light–matter particles that form upon strong coupling of an excitonic transition to a cavity mode. As bosons, polaritons can form condensates with coherent laser-like emission. For organic materials, optically pumped condensation was achieved at room temperature but electrically pumped condensation remains elusive due to insufficient polariton densities. Here we combine the outstanding optical and electronic properties of purified, solution-processed semiconducting (6,5) single-walled carbon nanotubes (SWCNTs) in a microcavity-integrated light-emitting field-effect transistor to realize efficient electrical pumping of exciton-polaritons at room temperature with high current densities (>10 kA cm−2) and tunability in the near-infrared (1,060 nm to 1,530 nm). We demonstrate thermalization of SWCNT polaritons, exciton-polariton pumping rates ~104 times higher than in current organic polariton devices, direct control over the coupling strength (Rabi splitting) via the applied gate voltage, and a tenfold enhancement of polaritonic over excitonic emission. This powerful material–device combination paves the way to carbon-based polariton emitters and possibly lasers.
Citation
Graf , A , Held , M , Zakharko , Y , Tropf , L C , Gather , M C & Zaumseil , J 2017 , ' Electrical pumping and tuning of exciton-polaritons in carbon nanotube microcavities ' , Nature Materials , vol. 16 , pp. 911-917 . https://doi.org/10.1038/nmat4940
Publication
Nature Materials
Status
Peer reviewed
DOI
https://doi.org/10.1038/nmat4940
ISSN
1476-1122
Type
Journal article
Rights
© 2017, Macmillan Publishers Ltd, part of Springer Nature. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at www.nature.com / https://doi.org/10.1038/nmat4940
Description
This research was financially supported by the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement No. 306298 (EN-LUMINATE) and under the European Union’s Horizon 2020 Framework Programme (FP/2014-2020)/ERC Grant Agreement No. 640012 (ABLASE) and by the Scottish Funding Council (through SUPA). L.T. thanks the EPSRC for support through the CM-DTC (EP/L015110/1). J.Z. thanks the Alfried Krupp von Bohlen und Halbach-Stiftung via the “Alfried Krupp Förderpreis für junge Hochschullehrer” for general support.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/12504

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter