Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorKronenberg, Nils M.
dc.contributor.authorLiehm, Philipp
dc.contributor.authorSteude, Anja
dc.contributor.authorKnipper, Johanna A.
dc.contributor.authorBorger, Jessica G.
dc.contributor.authorScarcelli, Giuliano
dc.contributor.authorFranze, Kristian
dc.contributor.authorPowis, Simon J.
dc.contributor.authorGather, Malte C.
dc.date.accessioned2017-12-20T00:32:11Z
dc.date.available2017-12-20T00:32:11Z
dc.date.issued2017-07-01
dc.identifier.citationKronenberg , N M , Liehm , P , Steude , A , Knipper , J A , Borger , J G , Scarcelli , G , Franze , K , Powis , S J & Gather , M C 2017 , ' Long-term imaging of cellular forces with high precision by elastic resonator interference stress microscopy ' , Nature Cell Biology , vol. 19 , no. 7 , pp. 864-872 . https://doi.org/10.1038/ncb3561en
dc.identifier.issn1465-7392
dc.identifier.otherPURE: 249941513
dc.identifier.otherPURE UUID: b48e4256-6e8a-495d-adf8-5c6d90fb484a
dc.identifier.otherScopus: 85021759302
dc.identifier.otherORCID: /0000-0002-4857-5562/work/47136424
dc.identifier.otherORCID: /0000-0003-4218-2984/work/60195328
dc.identifier.otherWOS: 000404408800018
dc.identifier.urihttps://hdl.handle.net/10023/12361
dc.descriptionThis project has received funding from the Human Frontiers Science Program (RGY0074/2013), the Scottish Funding Council (via SUPA), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 640012), the EPSRC DTP (EP/L505079/1), the RS MacDonald Charitable Trust and the MRC (G1100116 and G110312/1).en
dc.description.abstractCellular forces are crucial for many biological processes but current methods to image them have limitations with respect to data analysis, resolution and throughput. Here, we present a robust approach to measure mechanical cell–substrate interactions in diverse biological systems by interferometrically detecting deformations of an elastic micro-cavity. Elastic resonator interference stress microscopy (ERISM) yields stress maps with exceptional precision and large dynamic range (2 nm displacement resolution over a >1 μm range, translating into 1 pN force sensitivity). This enables investigation of minute vertical stresses (<1 Pa) involved in podosome protrusion, protein-specific cell–substrate interaction and amoeboid migration through spatial confinement in real time. ERISM requires no zero-force reference and avoids phototoxic effects, which facilitates force monitoring over multiple days and at high frame rates and eliminates the need to detach cells after measurements. This allows observation of slow processes such as differentiation and further investigation of cells, for example, by immunostaining.
dc.language.isoeng
dc.relation.ispartofNature Cell Biologyen
dc.rights© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1038/ncb3561en
dc.subjectQC Physicsen
dc.subjectQH301 Biologyen
dc.subjectT Technologyen
dc.subjectDASen
dc.subjectBDCen
dc.subjectR2Cen
dc.subject.lccQCen
dc.subject.lccQH301en
dc.subject.lccTen
dc.titleLong-term imaging of cellular forces with high precision by elastic resonator interference stress microscopyen
dc.typeJournal articleen
dc.contributor.sponsorEuropean Research Councilen
dc.description.versionPostprinten
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. School of Medicineen
dc.contributor.institutionUniversity of St Andrews. Biomedical Sciences Research Complexen
dc.contributor.institutionUniversity of St Andrews. Cellular Medicine Divisionen
dc.identifier.doihttps://doi.org/10.1038/ncb3561
dc.description.statusPeer revieweden
dc.date.embargoedUntil2017-12-19
dc.identifier.urlhttps://doi.org/10.1101/118554en
dc.identifier.grantnumber640012en


This item appears in the following Collection(s)

Show simple item record