Files in this item
Calibration of the B/Ca proxy in the planktic foraminifer Orbulina universa to Paleocene seawater conditions
Item metadata
dc.contributor.author | Haynes, Laura L. | |
dc.contributor.author | Hönisch, Bärbel | |
dc.contributor.author | Dyez, Kelsey A. | |
dc.contributor.author | Holland, Kate | |
dc.contributor.author | Rosenthal, Yair | |
dc.contributor.author | Fish, Carina R. | |
dc.contributor.author | Subhas, Adam V. | |
dc.contributor.author | Rae, James W. B. | |
dc.date.accessioned | 2017-12-18T00:32:04Z | |
dc.date.available | 2017-12-18T00:32:04Z | |
dc.date.issued | 2017-06 | |
dc.identifier.citation | Haynes , L L , Hönisch , B , Dyez , K A , Holland , K , Rosenthal , Y , Fish , C R , Subhas , A V & Rae , J W B 2017 , ' Calibration of the B/Ca proxy in the planktic foraminifer Orbulina universa to Paleocene seawater conditions ' , Paleoceanography , vol. 32 , no. 6 , pp. 580-599 . https://doi.org/10.1002/2016PA003069 | en |
dc.identifier.issn | 1944-9186 | |
dc.identifier.other | PURE: 250026271 | |
dc.identifier.other | PURE UUID: 9a9f4b85-42cb-4329-826f-0a8b61c170f0 | |
dc.identifier.other | Bibtex: urn:e3e468c24bc547e8f0b924619dc09b52 | |
dc.identifier.other | Scopus: 85020548523 | |
dc.identifier.other | ORCID: /0000-0003-3904-2526/work/60196314 | |
dc.identifier.other | WOS: 000405638700005 | |
dc.identifier.uri | http://hdl.handle.net/10023/12348 | |
dc.description | This research is funded by NSF [OCE12-32987] to BH. | en |
dc.description.abstract | The B/Ca ratio of planktic foraminiferal calcite, a proxy for the surface ocean carbonate system, displays large negative excursions during the Paleocene-Eocene Thermal Maximum (PETM, 55.9 Ma), consistent with rapid ocean acidification at that time. However, the B/Ca excursion measured at the PETM exceeds a magnitude that modern pH-calibrations can explain. Numerous other controls on the proxy have been suggested, including foraminiferal growth rate and the total concentration of Dissolved Inorganic Carbon (DIC). Here we present new calibrations for B/Ca vs. the combined effects of pH and DIC in the symbiont-bearing planktic foraminifer Orbulina universa, grown in culture solutions with simulated Paleocene seawater elemental composition (high [Ca], low [Mg], and low [B]T). We also investigate the isolated effects of low seawater total boron concentration ([B]T), high [Ca], reduced symbiont photosynthetic activity, and average shell growth rate on O. universa B/Ca in order to further understand the proxy systematics and to determine other possible influences on the PETM records. We find that average shell growth rate does not appear to determine B/Ca in high calcite saturation experiments. In addition, our “Paleocene” calibration shows higher sensitivity than the modern calibration at low [B(OH)4-]/DIC. Given a large DIC pulse at the PETM, this amplification of the B/Ca response can more fully explain the PETM B/Ca excursion. However, further calibrations with other foraminifer species are needed to determine the range of foraminifer species-specific proxy sensitivities under these conditions for quantitative reconstruction of large carbon cycle perturbations. | |
dc.language.iso | eng | |
dc.relation.ispartof | Paleoceanography | en |
dc.rights | ©2017 American Geophysical Union. All Rights Reserved. This work is made available online in accordance with the publisher’s policies. This is the final published version of the work, which was originally published at: https://dx.doi.org/10.1002/2016PA003069 | en |
dc.subject | O. universa | en |
dc.subject | B/Ca | en |
dc.subject | Paleocene-Eocene Thermal Maximum | en |
dc.subject | Ocean acidification | en |
dc.subject | Planktic foraminifera | en |
dc.subject | GE Environmental Sciences | en |
dc.subject | GC Oceanography | en |
dc.subject | DAS | en |
dc.subject | SDG 14 - Life Below Water | en |
dc.subject.lcc | GE | en |
dc.subject.lcc | GC | en |
dc.title | Calibration of the B/Ca proxy in the planktic foraminifer Orbulina universa to Paleocene seawater conditions | en |
dc.type | Journal article | en |
dc.contributor.sponsor | NERC | en |
dc.description.version | Publisher PDF | en |
dc.contributor.institution | University of St Andrews. Earth and Environmental Sciences | en |
dc.contributor.institution | University of St Andrews. St Andrews Isotope Geochemistry | en |
dc.identifier.doi | https://doi.org/10.1002/2016PA003069 | |
dc.description.status | Peer reviewed | en |
dc.date.embargoedUntil | 2017-12-17 | |
dc.identifier.grantnumber | NE/N011716/1 | en |
This item appears in the following Collection(s)
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.