Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorLundt, N.
dc.contributor.authorCherotchenko, E.
dc.contributor.authorIff, O.
dc.contributor.authorFan, X.
dc.contributor.authorShen, Y.
dc.contributor.authorBigenwald, P.
dc.contributor.authorKavokin, A. V.
dc.contributor.authorHöfling, Sven
dc.contributor.authorSchneider, C.
dc.date.accessioned2017-12-15T09:30:19Z
dc.date.available2017-12-15T09:30:19Z
dc.date.issued2018-01-17
dc.identifier.citationLundt , N , Cherotchenko , E , Iff , O , Fan , X , Shen , Y , Bigenwald , P , Kavokin , A V , Höfling , S & Schneider , C 2018 , ' The interplay between excitons and trions in a monolayer of MoSe 2 ' , Applied Physics Letters , vol. 112 , no. 3 , 031107 . https://doi.org/10.1063/1.5019177en
dc.identifier.issn0003-6951
dc.identifier.otherPURE: 251763248
dc.identifier.otherPURE UUID: d3f12048-6f17-4877-bf75-4deca9a869d8
dc.identifier.otherScopus: 85041438094
dc.identifier.otherWOS: 000423027300007
dc.identifier.urihttps://hdl.handle.net/10023/12336
dc.descriptionWe acknowledge financial support by the ERC (Grant Unlimit-2D) and the State of Bavaria.en
dc.description.abstractThe luminescence and absorption properties of transition metal dichalcogenide mono-layers are widely determined by neutral and charged excitonic complexes. Here, we focus on the impact of a free carrier reservoir on the optical properties of excitonicand trionic complexes in a MoSe2 monolayer at cryogenic temperatures. By applying photodoping via a non-resonant pump laser the electron density can be controlled inour sample, which is is directly reflected in the contribution of excitons and trions to the luminescence signal. We find significant shifts of both the exciton as well as the trion energy in the presence of an induced electron gas both in power- and in time evolution (on the second to minute scale) in our photoluminescence spectra. In particular, in the presence of the photo-doped carrier reservoir, we observe that the splitting between exciton and trion can be enhanced by up to 4 meV. This behaviour is phenomenologically explained by an interplay between an increased screening of excitons via electrons in our system and a modification of the Fermi level. We introduce a simple, but still quantitative treatment of these effects within an variational approach that takes into account both screening and phase space filling effects.
dc.format.extent5
dc.language.isoeng
dc.relation.ispartofApplied Physics Lettersen
dc.rights© 2017, the Author(s). This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1063/1.5019177en
dc.subjectQC Physicsen
dc.subjectT Technologyen
dc.subjectNDASen
dc.subject.lccQCen
dc.subject.lccTen
dc.titleThe interplay between excitons and trions in a monolayer of MoSe2en
dc.typeJournal articleen
dc.description.versionPostprinten
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. Condensed Matter Physicsen
dc.identifier.doihttps://doi.org/10.1063/1.5019177
dc.description.statusPeer revieweden


This item appears in the following Collection(s)

Show simple item record