St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mixing regime simulation and cellulose particle tracing in a Stacked Frame Photocatalytic Reactor

Thumbnail
View/Open
Irvine_2016_CEJ_SFPR_AAM.pdf (1.632Mb)
Date
01/04/2017
Author
Nagarajan, Sanjay
Stella, Lorenzo
Lawton, Linda A.
T. S. Irvine, John
Robertson, Peter K. J.
Funder
EPSRC
Grant ID
EP/K036769/1
Keywords
Photocatalysis
COMSOL
Fermentable Sugars
Mixing
Simulation
QD Chemistry
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
To sustainably meet the global energy demand, unconventional methods to produce renewable energy must emerge. Biofuels from cellulose (via fermentable sugar production) mediated via photocatalysis provides an alternative to conventional fossil fuels. In order to effectively drive photocatalytic processes an effective reactor design is required, the design of which is influenced by a number of key factors such as the catalyst to reactant ratio and residence time, catalyst illumination time, light penetration and distribution for the system, mass transfer limitations (mixing) and product recovery. In this study we use COMSOL Multiphysics® to simulate and assess one of the mentioned parameters – mixing regime of cellulose particles in a Stacked Frame Photocatalysis Reactor (SFPR). In the reactor design, we compare two mixers: a ‘plus’ shaped magnetic stirrer bar and an 8 blade Rushton impeller. The simulations reveal that the Rushton impeller offers a radial mixing pattern with a higher fluid velocity of 1.2 m/s when compared to the stirrer bar that offers a fluid velocity of 0.9 m/s. Cellulose particle tracing simulations confirm that the particle dispersion is superior in the case of the Rushton impeller as the vorticity generated during the mixing push the particles to the reactor’s walls. Since the particles are forced towards the walls, there is a probability of more particles being illuminated than in the case of no or improper mixing.
Citation
Nagarajan , S , Stella , L , Lawton , L A , T. S. Irvine , J & Robertson , P K J 2017 , ' Mixing regime simulation and cellulose particle tracing in a Stacked Frame Photocatalytic Reactor ' , Chemical Engineering Journal , vol. 313 , pp. 301-308 . https://doi.org/10.1016/j.cej.2016.12.016
Publication
Chemical Engineering Journal
Status
Peer reviewed
DOI
https://doi.org/10.1016/j.cej.2016.12.016
ISSN
1385-8947
Type
Journal article
Rights
© 2016 Elsevier B.V. All rights reserved. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at: https://doi.org/10.1016/j.cej.2016.12.016
Description
This work was supported by the Engineering and Physical Sciences Research Council (Project number EP/K036769/1), Robert Gordon University’s IDEAS PhD studentship and Queen’s University Belfast’s PhD studentship.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/12293

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter