St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evolution of temporal coherence in confined exciton-polariton condensates

Thumbnail
View/Open
Hoefling_2017_PRL_TemporalCoherence_AAM.pdf (4.519Mb)
Date
05/01/2018
Author
Klaas, M.
Flayac, H.
Amthor, M.
Savenko, I. G.
Brodbeck, S.
Ala-Nissila, T.
Klembt, S.
Schneider, C.
Höfling, Sven
Keywords
QC Physics
T Technology
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
We study the influence of spatial confinement on the second-order temporal coherence of the emission from a semiconductor microcavity in the strong coupling regime. Provided by etched micropillars, the confinement has a favorable impact on the temporal coherence of solid state quasi-condensates that evolve in our device above threshold. By fitting the experimental data with a microscopic quantum theory based on a quantum jump approach, we scrutinize the influence of pump power and confinement and find that phonon-mediated transitions are enhanced in the case of a confined structure, in which the modes split into a discrete set. By increasing the pump power beyond the condensation threshold, temporal coherence significantly improves in devices with increased spatial confinement, as revealed in the transition from thermal to coherent statistics of the emitted light.
Citation
Klaas , M , Flayac , H , Amthor , M , Savenko , I G , Brodbeck , S , Ala-Nissila , T , Klembt , S , Schneider , C & Höfling , S 2018 , ' Evolution of temporal coherence in confined exciton-polariton condensates ' , Physical Review Letters , vol. 120 , no. 1 , 017401 . https://doi.org/10.1103/PhysRevLett.120.017401
Publication
Physical Review Letters
Status
Peer reviewed
DOI
https://doi.org/10.1103/PhysRevLett.120.017401
ISSN
0031-9007
Type
Journal article
Rights
© 2017, American Physical Society. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1103/PhysRevLett.120.017401
Description
The authors would like to thank the State of Bavaria for financial support. T.A-N. has been supported in part by the Academy of Finland through its CoE grants 251748 and 284621. I.G.S. has been supported by IBS-R024-D1, the Australian Research Council's Discovery Projects funding scheme (project DE160100167), and the Dynasty Foundation.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/12178

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter