Show simple item record

Files in this item

FilesSizeFormatView

There are no files associated with this item.

Item metadata

dc.contributor.advisorIrvine, John T. S.
dc.contributor.authorPapargyriou, Despoina
dc.coverage.spatial[4], 151 p.en_US
dc.date.accessioned2017-11-16T11:27:37Z
dc.date.available2017-11-16T11:27:37Z
dc.date.issued2017-12-07
dc.identifier.urihttps://hdl.handle.net/10023/12113
dc.description.abstractOxygen Transport Membranes (OTMs) can drastically reduce the energy and cost demands of processes that require pure oxygen, as they offer the possibility to combine a separation unit with a chemical reactor. One of the most commercially viable applications of OTMs is the partial oxidation of hydrocarbons for syngas production. A typical OTM configuration is a sequential arrangement of layers, i.e. an inactive support, a fuel oxidation layer, a dense layer and an oxygen reduction layer. However, one of the limitations of the OTM system is the low catalytic activity and stability of the materials currently used for the fuel oxidation layer. Moreover, the traditional deposition techniques that are used for the catalysts preparation are difficult to perform, as the fuel oxidation layer is buried deeply in the structure of the OTM. To simplify the OTM fabrication and improve the catalysts activity and stability, this thesis explores the exsolution of Ni nanoparticles from two different host lattice compositions, as potential materials for the fuel oxidation layer of OTMs. The (La₀.₇₅Sr₀.₂₅)(Cr₀.₅Mn₀.₄₅Ni₀.₅)O₃ (LSCMNi5) perovskite was selected, as the first candidate material for the OTMs. During reduction, the exsolution of Ni nanoparticles from the perovskite lattice took place and enhanced significantly the catalytic activity of the material regarding methane conversion. However, these nanoparticles were oxidised during the first hours of the testing and slowly reincorporated into the perovskite structure, leading to drop in the performance. Thereafter, the (La₀.₇₅Sr₀.₂₅)(Cr₀.₅Mn₀.₄₅Ni₀.₅)O₃ (LSCMNi5) perovskite was selected as an alternative composition. When the oxide lattice was sufficiently reduced, the exsolution of Fe-Ni alloy nanoparticles occurred. The catalytic testing suggested that the Fe-Ni alloy nanoparticles on LSCFNi5 presented lower activity for methane conversion comparing to the Ni nanoparticles on LSCMNi5, but higher stability in oxidising conditions. By increasing the Ni doping on the B-site of LSCF to 15 mol%, the catalytic activity of the material regarding methane conversion was increased and exceeded that of LSCMNi5. A CH₄ conversion of 70% was achieved, which was 20 times higher than that of the initial LSCF perovskite. Therefore, by tailoring the perovskite composition and the exsolution of the Fe-Ni alloy nanoparticles, it was possible to synthesize a material for the fuel oxidation layer of OTMs, which combined the high catalytic activity of Ni and the good redox stability of Fe.en_US
dc.language.isoenen_US
dc.publisherUniversity of St Andrews
dc.subjectOxygen transport membranesen_US
dc.subjectPerovskitesen_US
dc.subjectExsolutionen_US
dc.subjectMethane steam reformingen_US
dc.subject.lccTK2931.P27
dc.subject.lcshPerovskite.en
dc.subject.lcshCatalysts.en
dc.subject.lcshSolid oxide fuel cells.en
dc.subject.lcshOxygen.en
dc.titleMaterials and catalysts incorporation for the fuel oxidation layer of oxygen transport membranesen_US
dc.typeThesisen_US
dc.contributor.sponsorPraxair, Inc.en_US
dc.contributor.sponsorEngineering and Physical Sciences Research Council (EPSRC)en_US
dc.type.qualificationlevelDoctoralen_US
dc.type.qualificationnamePhD Doctor of Philosophyen_US
dc.publisher.institutionThe University of St Andrewsen_US
dc.rights.embargodate2018-11-01
dc.rights.embargoreasonThesis restricted in accordance with University regulations. Print and electronic copy restricted until 1st November 2018en


This item appears in the following Collection(s)

Show simple item record