Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorAl Ma’Mari, Fatma
dc.contributor.authorRogers, Matthew
dc.contributor.authorAlghamdi, Shoug
dc.contributor.authorMoorsom, Timothy
dc.contributor.authorLee, Stephen Leslie
dc.contributor.authorProkscha, Thomas
dc.contributor.authorLuetkens, Hubertus
dc.contributor.authorValvidare, Manuel
dc.contributor.authorTeobaldi, Gilberto
dc.contributor.authorFlokstra, Machiel Geert
dc.contributor.authorStewart, Rhea
dc.contributor.authorGargiani, Pierluigi
dc.contributor.authorAli, Mannan
dc.contributor.authorBurnell, Gavin
dc.contributor.authorHickey, B. J.
dc.contributor.authorCespedes, Oscar
dc.date.accessioned2017-11-16T00:33:17Z
dc.date.available2017-11-16T00:33:17Z
dc.date.issued2017-05-30
dc.identifier.citationAl Ma’Mari , F , Rogers , M , Alghamdi , S , Moorsom , T , Lee , S L , Prokscha , T , Luetkens , H , Valvidare , M , Teobaldi , G , Flokstra , M G , Stewart , R , Gargiani , P , Ali , M , Burnell , G , Hickey , B J & Cespedes , O 2017 , ' Emergent magnetism at transition-metal–nanocarbon interfaces ' , Proceedings of the National Academy of Sciences of the United States of America , vol. 114 , no. 22 , pp. 5583-5588 . https://doi.org/10.1073/pnas.1620216114en
dc.identifier.issn0027-8424
dc.identifier.otherPURE: 250129301
dc.identifier.otherPURE UUID: 76c39b54-d902-4855-a731-a6b4916ac66f
dc.identifier.otherScopus: 85020047292
dc.identifier.otherORCID: /0000-0002-2020-3310/work/54995359
dc.identifier.otherORCID: /0000-0002-4333-1358/work/59953700
dc.identifier.otherWOS: 000402296700035
dc.identifier.urihttps://hdl.handle.net/10023/12108
dc.descriptionWe thank the Engineering and Physical Sciences Research Council (EPSRC) in the United Kingdom for support through Grants EP/P001556/1, EP/J01060X/1, EP/I004483/1, and EP/M000923/1. R.S. wishes to acknowledge EPSRC for a scholarship via the Grant EP/L015110/1. XAS/XMCD experiments were performed in the BOREAS beamline at the Alba synchrotron (Proposals ID2014071101 and ID2015091530). M.V. acknowledges Mineco Grant FIS2013-45469-C4-3-R. Use of the N8 High Performance Computing (HPC) (EPSRC EP/K000225/1) and ARCHER (via the UK Car–Parrinello Consortium, EP/K013610/1 and EP/P022189/1)en
dc.description.abstractCharge transfer at metallo–molecular interfaces may be used to design multifunctional hybrids with an emergent magnetization that may offer an eco-friendly and tunable alternative to conventional magnets and devices. Here, we investigate the origin of the magnetism arising at these interfaces by using different techniques to probe 3d and 5d metal films such as Sc, Mn, Cu, and Pt in contact with fullerenes and rf-sputtered carbon layers. These systems exhibit small anisotropy and coercivity together with a high Curie point. Low-energy muon spin spectroscopy in Cu and Sc–C60 multilayers show a quick spin depolarization and oscillations attributed to nonuniform local magnetic fields close to the metallo–carbon interface. The hybridization state of the carbon layers plays a crucial role, and we observe an increased magnetization as sp3 orbitals are annealed into sp2−π graphitic states in sputtered carbon/copper multilayers. X-ray magnetic circular dichroism (XMCD) measurements at the carbon K edge of C60 layers in contact with Sc films show spin polarization in the lowest unoccupied molecular orbital (LUMO) and higher π*-molecular levels, whereas the dichroism in the σ*-resonances is small or nonexistent. These results support the idea of an interaction mediated via charge transfer from the metal and dz–π hybridization. Thin-film carbon-based magnets may allow for the manipulation of spin ordering at metallic surfaces using electrooptical signals, with potential applications in computing, sensors, and other multifunctional magnetic devices.
dc.format.extent6
dc.language.isoeng
dc.relation.ispartofProceedings of the National Academy of Sciences of the United States of Americaen
dc.rights© 2017, he Author(s). This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at www.pnas.org / https://doi.org/10.1073/pnas.1620216114en
dc.subjectEmergent magnetismen
dc.subjectMolecular spintronicsen
dc.subjectInterfacial magnetismen
dc.subjectCharge transferen
dc.subjectNanocarbonen
dc.subjectQC Physicsen
dc.subjectT Technologyen
dc.subjectDASen
dc.subject.lccQCen
dc.subject.lccTen
dc.titleEmergent magnetism at transition-metal–nanocarbon interfacesen
dc.typeJournal articleen
dc.contributor.sponsorEPSRCen
dc.contributor.sponsorEPSRCen
dc.contributor.sponsorEPSRCen
dc.description.versionPostprinten
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. Condensed Matter Physicsen
dc.identifier.doihttps://doi.org/10.1073/pnas.1620216114
dc.description.statusPeer revieweden
dc.date.embargoedUntil2017-11-15
dc.identifier.grantnumberEP/I031014/1en
dc.identifier.grantnumberEP/J01060X/1en
dc.identifier.grantnumberEP/L015110/1en


This item appears in the following Collection(s)

Show simple item record