Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorBurgess, B. H.
dc.contributor.authorDritschel, D. G.
dc.contributor.authorScott, R. K.
dc.date.accessioned2017-11-07T17:30:13Z
dc.date.available2017-11-07T17:30:13Z
dc.date.issued2017-11
dc.identifier250570512
dc.identifier7895e921-e10c-4728-981b-2fc79bd72cc2
dc.identifier85026454950
dc.identifier000416067400004
dc.identifier.citationBurgess , B H , Dritschel , D G & Scott , R K 2017 , ' Vortex scaling ranges in two-dimensional turbulence ' , Physics of Fluids , vol. 29 , no. 11 , 111104 . https://doi.org/10.1063/1.4993144en
dc.identifier.issn1070-6631
dc.identifier.othercrossref: 10.1063/1.4993144
dc.identifier.otherORCID: /0000-0001-9297-8003/work/54516623
dc.identifier.otherORCID: /0000-0001-5624-5128/work/55378707
dc.identifier.otherORCID: /0000-0001-6489-3395/work/64697763
dc.identifier.urihttps://hdl.handle.net/10023/12029
dc.description.abstractWe survey the role of coherent vortices in two-dimensional turbulence, including formation mechanisms, implications for classical similarity and inertial range theories, and characteristics of the vortex populations. We review early work on the spatial and temporal scaling properties of vortices in freely evolving turbulence and more recent developments, including a spatiotemporal scaling theory for vortices in the forced inverse energy cascade. We emphasize that Kraichnan-Batchelor similarity theories and vortex scaling theories are best viewed as complementary and together provide a more complete description of two-dimensional turbulence. In particular, similarity theory has a continued role in describing the weak filamentary sea between the vortices. Moreover, we locate both classical inertial and vortex scaling ranges within the broader framework of scaling in far-from-equilibrium systems, which generically exhibit multiple fixed point solutions with distinct scaling behaviour. We describe how stationary transport in a range of scales comoving with the dilatation of flow features, as measured by the growth in vortex area, constrains the vortex number density in both freely evolving and forced two-dimensional turbulence. The new theories for coherent vortices reveal previously hidden nontrivial scaling, point to new dynamical understanding, and provide a novel exciting window into two-dimensional turbulence.
dc.format.extent12
dc.format.extent1811996
dc.language.isoeng
dc.relation.ispartofPhysics of Fluidsen
dc.subjectQA Mathematicsen
dc.subjectQC Physicsen
dc.subjectNDASen
dc.subject.lccQAen
dc.subject.lccQCen
dc.titleVortex scaling ranges in two-dimensional turbulenceen
dc.typeJournal articleen
dc.contributor.sponsorNERCen
dc.contributor.institutionUniversity of St Andrews. Applied Mathematicsen
dc.contributor.institutionUniversity of St Andrews. Marine Alliance for Science & Technology Scotlanden
dc.contributor.institutionUniversity of St Andrews. Scottish Oceans Instituteen
dc.identifier.doi10.1063/1.4993144
dc.description.statusPeer revieweden
dc.identifier.grantnumberNE/M014983/1en


This item appears in the following Collection(s)

Show simple item record