St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Preserving invariance properties of reaction-diffusion systems on stationary surfaces

Thumbnail
View/Open
Frittelli_2017_Preserving_invariance_IMAJNA_CC.pdf (650.0Kb)
Date
27/10/2017
Author
Frittelli, Massimo
Madzvamuse, Anotide
Sgura, Ivonne
Venkataraman, Chandrasekhar
Keywords
Surface finite elements
Mass lumping
Invariant region
Maximum principle
Reaction-diffusion
Heat equation
Convergence
Pattern formation
QA Mathematics
QC Physics
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
We propose and analyse a lumped surface finite element method for the numerical approximation of reaction–diffusion systems on stationary compact surfaces in ℝ3. The proposed method preserves the invariant regions of the continuous problem under discretization and, in the special case of scalar equations, it preserves the maximum principle. On the application of a fully discrete scheme using the implicit–explicit Euler method in time, we prove that invariant regions of the continuous problem are preserved (i) at the spatially discrete level with no restriction on the meshsize and (ii) at the fully discrete level under a timestep restriction. We further prove optimal error bounds for the semidiscrete and fully discrete methods, that is, the convergence rates are quadratic in the meshsize and linear in the timestep. Numerical experiments are provided to support the theoretical findings. We provide examples in which, in the absence of lumping, the numerical solution violates the invariant region leading to blow-up.
Citation
Frittelli , M , Madzvamuse , A , Sgura , I & Venkataraman , C 2017 , ' Preserving invariance properties of reaction-diffusion systems on stationary surfaces ' , IMA Journal of Numerical Analysis , vol. Advance articles . https://doi.org/10.1093/imanum/drx058
Publication
IMA Journal of Numerical Analysis
Status
Peer reviewed
DOI
https://doi.org/10.1093/imanum/drx058
ISSN
0272-4979
Type
Journal article
Rights
© The authors 2017. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Description
This work (AM, CV) is partly supported by the EPSRC grant number EP/J016780/1 and the Leverhulme Trust Research Project Grant (RPG-2014-149). The authors (MF, AM, IS CV) would like to thank the Isaac Newton Institute for Mathematical Sciences for its hospitality during the programme [Coupling Geometric PDEs with Physics for Cell Morphology, Motility and Pattern Formation] supported by EPSRC Grant Number EP/K032208/1. AM acknowledges funding from the European Union Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 642866 and was partially supported by a grant from the Simons Foundation. AM is a Royal Society Wolfson Research Merit Award Holder funded generously by the Wolfson Foundation.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/12021

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter