Show simple item record

Files in this item


Item metadata

dc.contributor.authorNagarajan, Sanjay
dc.contributor.authorSkillen, Nathan C.
dc.contributor.authorFina, Federica
dc.contributor.authorZhang, Guan
dc.contributor.authorRandorn, Chamnan
dc.contributor.authorLawton, Linda A.
dc.contributor.authorIrvine, John T. S.
dc.contributor.authorRobertson, Peter K. J.
dc.identifier.citationNagarajan , S , Skillen , N C , Fina , F , Zhang , G , Randorn , C , Lawton , L A , Irvine , J T S & Robertson , P K J 2017 , ' Assessment of oxidative visible light and UV active photocatalysts by hydroxyl radical quantification ' , Journal of Photochemistry and Photobiology A: Chemistry , vol. 334 , pp. 13-19 .
dc.identifier.otherPURE: 247456623
dc.identifier.otherPURE UUID: a71d8629-47bc-4749-bc4a-603ccdbac1f5
dc.identifier.otherRIS: urn:0C921B7410E702797C54E3F839DFA8CB
dc.identifier.otherScopus: 84994666077
dc.identifier.otherORCID: /0000-0003-2594-350X/work/31324726
dc.identifier.otherWOS: 000390512700002
dc.identifier.otherORCID: /0000-0002-8394-3359/work/68280554
dc.descriptionThis work was supported by the Engineering and Physical Sciences Research Council (Project number EP/K036769/1), Robert Gordon University’s IDEAS PhD studentship and Queen’s University Belfast’s PhD studentship.en
dc.description.abstractA simple method for determining hydroxyl radical yields on semiconductor photocatalysts is highly desirable, especially when comparing different photocatalyst materials. This paper reports the screening of a selection of visible light active photocatalysts such as Pt-C3N4, 5% LaCr doped SrTiO3, Sr0.95Cr0.05TiO3 and Yellow TiO2 and compares them against WO3 and ultra violet (UV) light activated TiO2 P25 (standard commercial catalysts) based on their oxidative strengths (OH radical producing capability) using a well-studied chemical probe − coumarin. 7-hydroxycoumarin, the only fluorescent hydroxylation product of this reaction can then be measured to indirectly quantify the OH radicals produced. P25 under UV light produced the highest concentration of OH radicals (16.9 μM), followed by WO3 (0.56 μM) and Pt-C3N4 (0.25 μM). The maximum OH radical production rate for P25, WO3 and Pt-C3N4 were also determined and found to be 35.6 μM/hr, 0.28 μM/hr and 0.88 μM/hr respectively. The other visible light activated photocatalysts did not produce any OH radicals primarily as a result of their electronic structure. Furthermore, it was concluded that, if any visible light absorbing photocatalysts are to be fabricated in future for the purpose of photocatalytic oxidation, their OH radical producing rates (and quantities) should be determined and compared to P25.
dc.relation.ispartofJournal of Photochemistry and Photobiology A: Chemistryen
dc.rights© 2016 Elsevier B.V. All rights reserved. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at:
dc.subjectVisible light photocatalystsen
dc.subjectOH radicalen
dc.subjectQD Chemistryen
dc.titleAssessment of oxidative visible light and UV active photocatalysts by hydroxyl radical quantificationen
dc.typeJournal articleen
dc.contributor.institutionUniversity of St Andrews.The University of St Andrewsen
dc.contributor.institutionUniversity of St Andrews.School of Chemistryen
dc.contributor.institutionUniversity of St Andrews.EaSTCHEMen
dc.description.statusPeer revieweden

This item appears in the following Collection(s)

Show simple item record