St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

A possible low-intermediate temperature proton conductor based on silicon oxide phosphate

Thumbnail
View/Open
StefanSaxinPhDThesis.pdf (22.76Mb)
Date
05/2015
Author
Saxin, Stefan
Supervisor
Irvine, John T. S.
Funder
Engineering and Physical Sciences Research Council (EPSRC)
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
The main material studied in this project is silicon oxide phosphate, often referred to in the literature as Si₅O(PO₄)₆. This material has highly unusual coordination of the silicon (octahedral, as well as the more common tetrahedral). The structure is hexagonal, it has been assigned to space group R -3 and lattice parameters a ≈ 7.85 Å, c ≈ 24.14 Å. This work’s main focus is on understanding the interplay between structure and properties in order to enhance protonic conductivity for a fuel cell electrolyte. Silicon oxide phosphate was synthesised with the solid-state method, using a gel precursor made from H₃PO₄, water and SiO₂. Various compositions were made with different P/Si starting ratios, ranging between 0.57 - 1.5. There were small but significant differences in the a,b axes for the different compositions that corresponded to conductivity behaviour of hydrothermally treated P-Si compositions. This correlation was also found to appear in ³¹P NMR for the chemical shift at - 44 ppm for untreated P-Si compositions as well as in the temperatures of the DTA peaks for the hydrothermally treated compositions. This all implies that this particular P-Si system with the addition of water becomes a ternary system that enables protonic conductivity. A proposed mechanism for the protonic conductivity is given where it is suggested that protons flow along the internal channels of the structure using two waters that provide dual pathways for protons. This is possible through utilization of a proton thought to be in the structure (a P_OH bond of 1.57 Å). Protonic conductivity could further be increased in the system by incorporating 85% H₃PO₄ in the P-Si materials, thus these materials act as matrices for the phosphoric acid. Another composition, Ge₅O(PO₄)₆ with 5% extra germanium, was hydrothermally treated and found to have protonic conductivity at higher temperatures than the silicon oxide phosphate analogues.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Chemistry Theses
URI
http://hdl.handle.net/10023/11948

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter