Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorWigger, D.
dc.contributor.authorMermillod, Q.
dc.contributor.authorJakubczyk, T.
dc.contributor.authorFras, F.
dc.contributor.authorLe-Denmat, S.
dc.contributor.authorReiter, D. E.
dc.contributor.authorHöfling, Sven
dc.contributor.authorKamp, M.
dc.contributor.authorNogues, G.
dc.contributor.authorSchneider, C.
dc.contributor.authorKuhn, T.
dc.contributor.authorKasprzak, J.
dc.date.accessioned2017-10-26T10:30:55Z
dc.date.available2017-10-26T10:30:55Z
dc.date.issued2017-10-24
dc.identifier251316692
dc.identifier1c52ec7d-cac7-4186-b80e-beb5e2104353
dc.identifier85038099527
dc.identifier000413510900004
dc.identifier.citationWigger , D , Mermillod , Q , Jakubczyk , T , Fras , F , Le-Denmat , S , Reiter , D E , Höfling , S , Kamp , M , Nogues , G , Schneider , C , Kuhn , T & Kasprzak , J 2017 , ' Exploring coherence of individual excitons in InAs quantum dots embedded in natural photonic defects : influence of the excitation intensity ' , Physical Review. B, Condensed matter and materials physics , vol. 96 , no. 16 , 165311 . https://doi.org/10.1103/PhysRevB.96.165311en
dc.identifier.issn1098-0121
dc.identifier.urihttps://hdl.handle.net/10023/11925
dc.descriptionWe acknowledge the financial support by the European Research Council (ERC) Starting Grant PICSEN (grant no. 306387)en
dc.description.abstractThe exact optical response of quantum few-level systems depends crucially on the exact choice of the incoming pulse areas. We use four-wave mixing (FWM) spectroscopy to infer the coherent response and dynamics of single InAs quantum dots (QDs) and study their pulse area dependence. By combining atomic force microscopy with FWM hyperspectral imaging, we show that the retrieved FWM signals originate from individual QDs enclosed in natural photonic defects. The optimized light-matter coupling in these defects allows us to perform our studies in a wide range of driving field amplitudes. When varying the pulse areas of the exciting laser pulses Rabi rotations of microscopic interband coherences can be resolved by the two-pulse FWM technique. We investigate these Rabi coherence rotations within two- and three-level systems, both theoretically and experimentally, and explain their damping by the coupling to acoustic phonons. To highlight the importance of the pulse area in uence, we show that the phonon-induced dephasing of QD excitons depends on the pulse intensity.
dc.format.extent12
dc.format.extent2364697
dc.language.isoeng
dc.relation.ispartofPhysical Review. B, Condensed matter and materials physicsen
dc.subjectQC Physicsen
dc.subjectNDASen
dc.subject.lccQCen
dc.titleExploring coherence of individual excitons in InAs quantum dots embedded in natural photonic defects : influence of the excitation intensityen
dc.typeJournal articleen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. Condensed Matter Physicsen
dc.identifier.doi10.1103/PhysRevB.96.165311
dc.description.statusPeer revieweden
dc.identifier.urlhttps://journals.aps.org/prb/supplemental/10.1103/PhysRevB.96.165311en


This item appears in the following Collection(s)

Show simple item record