Show simple item record

Files in this item


Item metadata

dc.contributor.authorHartmann, F.
dc.contributor.authorPfenning, A.
dc.contributor.authorRebello Sousa Dias, M.
dc.contributor.authorLanger, F.
dc.contributor.authorHöfling, Sven
dc.contributor.authorKamp, M.
dc.contributor.authorWorschech, L.
dc.contributor.authorCastelano, L. K.
dc.contributor.authorMarques, G. E.
dc.contributor.authorLopez-Richard, V
dc.identifier.citationHartmann , F , Pfenning , A , Rebello Sousa Dias , M , Langer , F , Höfling , S , Kamp , M , Worschech , L , Castelano , L K , Marques , G E & Lopez-Richard , V 2017 , ' Temperature tuning from direct to inverted bistable electroluminescence in resonant tunneling diodes ' , Journal of Applied Physics , vol. 122 , no. 15 , 154502 .
dc.identifier.otherPURE: 251388966
dc.identifier.otherPURE UUID: 1d74a818-2b5f-4834-b3af-15b899edb259
dc.identifier.otherScopus: 85031920752
dc.identifier.otherWOS: 000439584800009
dc.descriptionThe authors are grateful for financial support by the BMBF via national project EIPHRIK (FKZ: 13N10710), the European Union (FPVII (2007-2013) under grant agreement no. 318287 LANDAUER), and the Brazilian Agencies CNPq and CAPES. S. H. gratefully acknowledges support by the Royal Society and the Wolfson Foundation.en
dc.description.abstractWe study the electroluminescence (EL) emission of purely n-doped resonant tunneling diodes in a wide temperature range. The paper demonstrates that the EL originates from impact ionization and radiative recombination in the extended collector region of the tunneling device. Bistable current-voltage response and EL are detected and their respective high and low states are tuned under varying temperature. The inversion bistability of the EL intensity can be switched from direct to inverted with respect to the tunneling current and the optical on/off ratio can be enhanced with increasing temperature. One order of magnitude amplification of the optical on/off ratio can be attained compared to the electrical one. Our observation can be explained by an interplay of moderate peak-to-valley current ratios, large resonance voltages, and electron energy loss mechanisms and thus could be applied as an alternative route towards optoelectronic applications of tunneling devices.
dc.relation.ispartofJournal of Applied Physicsen
dc.rights© 2017, the Author(s). This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at
dc.subjectQC Physicsen
dc.titleTemperature tuning from direct to inverted bistable electroluminescence in resonant tunneling diodesen
dc.typeJournal articleen
dc.contributor.sponsorThe Royal Societyen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. Condensed Matter Physicsen
dc.description.statusPeer revieweden

This item appears in the following Collection(s)

Show simple item record