St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Are the sublimation thermodynamics of organic molecules predictable?

Thumbnail
View/Open
McDonagh_etal_JCIM.pdf (2.111Mb)
Date
28/11/2016
Author
McDonagh, James L.
Palmer, David S.
van Mourik, Tanja
Mitchell, John B. O.
Keywords
QD Chemistry
DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
We compare a range of computational methods for the prediction of sublimation thermodynamics (enthalpy, entropy and free energy of sublimation). These include a model from theoretical chemistry that utilizes crystal lattice energy minimization (with the DMACRYS program) and QSPR models generated by both machine learning (Random Forest and Support Vector Machines) and regression (Partial Least Squares) methods. Using these methods we investigate the predictability of the enthalpy, entropy and free energy of sublimation, with consideration of whether such a method may be able to improve solubility prediction schemes. Previous work has suggested that the major source of error in solubility prediction schemes involving a thermodynamic cycle via the solid state is in the modeling of the free energy change away from the solid state. Yet contrary to this conclusion other work has found that the inclusion of terms such as the enthalpy of sublimation in QSPR methods does not improve the predictions of solubility. We suggest the use of theoretical chemistry terms, detailed explicitly in the methods section, as descriptors for the prediction of the enthalpy and free energy of sublimation. A dataset of 158 molecules with experimental sublimation thermodynamics values and some CSD refcodes has been collected from the literature and is provided with their original source references.
Citation
McDonagh , J L , Palmer , D S , van Mourik , T & Mitchell , J B O 2016 , ' Are the sublimation thermodynamics of organic molecules predictable? ' , Journal of Chemical Information and Modeling , vol. 56 , no. 11 , pp. 2162-2179 . https://doi.org/10.1021/acs.jcim.6b00033
Publication
Journal of Chemical Information and Modeling
Status
Peer reviewed
DOI
https://doi.org/10.1021/acs.jcim.6b00033
ISSN
1549-9596
Type
Journal article
Rights
Copyright © 2016 American Chemical Society. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at: https://doi.org/10.1021/acs.jcim.6b00033
Description
JMcD and JBOM would like to thank SULSA for funding. DSP thanks the University of Strathclyde for support through its Strategic Appointment and Investment Scheme.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/11874

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter