Files in this item
On the Fourier analytic structure of the Brownian graph
Item metadata
dc.contributor.author | Fraser, Jonathan MacDonald | |
dc.contributor.author | Sahlsten, Tuomas | |
dc.date.accessioned | 2017-10-13T13:30:07Z | |
dc.date.available | 2017-10-13T13:30:07Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | Fraser , J M & Sahlsten , T 2018 , ' On the Fourier analytic structure of the Brownian graph ' , Analysis & PDE , vol. 11 , no. 1 , pp. 115-132 . https://doi.org/10.2140/apde.2018.11.115 | en |
dc.identifier.issn | 1948-206X | |
dc.identifier.other | PURE: 251061378 | |
dc.identifier.other | PURE UUID: f0b1237c-92f9-4d59-9612-959183b1bd4a | |
dc.identifier.other | Scopus: 85032263781 | |
dc.identifier.other | ORCID: /0000-0002-8066-9120/work/58285483 | |
dc.identifier.other | WOS: 000429119200003 | |
dc.identifier.uri | http://hdl.handle.net/10023/11846 | |
dc.description.abstract | In a previous article (Int. Math. Res. Not. 2014:10 (2014), 2730–2745) T. Orponen and the authors proved that the Fourier dimension of the graph of any real-valued function on R is bounded above by 1. This partially answered a question of Kahane (1993) by showing that the graph of the Wiener process Wt (Brownian motion) is almost surely not a Salem set. In this article we complement this result by showing that the Fourier dimension of the graph of Wt is almost surely 1. In the proof we introduce a method based on Itô calculus to estimate Fourier transforms by reformulating the question in the language of Itô drift-diffusion processes and combine it with the classical work of Kahane on Brownian images. | |
dc.format.extent | 18 | |
dc.language.iso | eng | |
dc.relation.ispartof | Analysis & PDE | en |
dc.rights | © 2018, Mathematical Sciences Publishers. This work has been made available online in accordance with the publisher’s policies. This is the final published version of the work, which was originally published at https://doi.org/10.2140/apde.2018.11.115 | en |
dc.subject | Brownian motion | en |
dc.subject | Wiener process | en |
dc.subject | Itô calculus | en |
dc.subject | Itô drift-diffusion process | en |
dc.subject | Fourier transform | en |
dc.subject | Fourier dimension | en |
dc.subject | Salem set | en |
dc.subject | Graph | en |
dc.subject | QA Mathematics | en |
dc.subject | T-NDAS | en |
dc.subject | BDC | en |
dc.subject | R2C | en |
dc.subject.lcc | QA | en |
dc.title | On the Fourier analytic structure of the Brownian graph | en |
dc.type | Journal article | en |
dc.contributor.sponsor | The Leverhulme Trust | en |
dc.description.version | Publisher PDF | en |
dc.contributor.institution | University of St Andrews. Pure Mathematics | en |
dc.identifier.doi | https://doi.org/10.2140/apde.2018.11.115 | |
dc.description.status | Peer reviewed | en |
dc.identifier.grantnumber | RF-2016-500 | en |
This item appears in the following Collection(s)
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.