St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Microfiber-microcavity system for efficient single photon collection

Thumbnail
View/Open
Hoefling_2016_OE_Microfiver_microcavity_AAM.pdf (832.6Kb)
Date
03/10/2016
Author
Lee, Chang-Min
Lim, Hee-Jin
Lee, Mireu
Schneider, Christian
Maier, Sebastian
Höfling, Sven
Kamp, Martin
Yong-Hee, Lee
Keywords
QC Physics
T Technology
NDAS
Metadata
Show full item record
Abstract
Single photon sources are key components for various quantum information processing. For practical quantum applications, bright single photon sources with efficient fiber-optical interfaces are highly required. Here, bright fiber-coupled single photon sources based on InAs quantum dots are demonstrated through the k-vector matching between a microfiber mode and a normal mode of the linear photonic crystal cavity. One of the modes of the linear photonic crystal cavity whose k-vector is similar to that of the microfiber mode is employed. From independent transmission measurement, the coupling efficiency directly into the fiber of 58% is obtained. When the quantum dot and cavity system is non-resonantly pumped with 80 MHz pulse train, a raw count rate of 1.81 MHz is obtained with g(2)(0) = 0.46. Resonant pump is expected to improve the rather high g(2)(0) value. Time-resolved photoluminescence is also measured to confirm the three-fold Purcell enhancement. This system provides a promising route for efficient direct fiber collections of single photons for quantum information processing.
Citation
Lee , C-M , Lim , H-J , Lee , M , Schneider , C , Maier , S , Höfling , S , Kamp , M & Yong-Hee , L 2016 , ' Microfiber-microcavity system for efficient single photon collection ' , Optics Express , vol. 24 , no. 20 , pp. 23471-23480 . https://doi.org/10.1364/OE.24.023471
Publication
Optics Express
Status
Peer reviewed
DOI
https://doi.org/10.1364/OE.24.023471
ISSN
1094-4087
Type
Journal article
Rights
© 2016, Optical Society of America. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at www.osapublishing.org / https://doi.org/10.1364/OE.24.023471
Description
Funded by the National Research Foundation of Korea (NRF) grant (MSIP) (NRF-2007-341-C00018, NRF-2014M3C1A3052567); State of Bavaria.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/11766

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter