St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Register / Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Emission lines in the atmosphere of the irradiated brown dwarf WD0137−349B

Thumbnail
View/Open
Helling_2017_MNRAS_EmissionLines_FinalPubVersion.pdf (1.192Mb)
Date
21/10/2017
Author
Longstaff, E. S.
Casewell, S. L.
Wynn, G. A.
Maxted, P. F. L.
Helling, Ch.
Funder
European Research Council
Grant ID
257431 257431
Keywords
Binaries: close
Brown dwarfs
White dwarfs
QB Astronomy
QC Physics
NDAS
Metadata
Show full item record
Abstract
We present new optical and near-infrared spectra of WD0137−349; a close white dwarf–brown dwarf non-interacting binary system with a period of ≈114 min. We have confirmed the presence of H α emission and discovered He, Na, Mg, Si, K, Ca, Ti and Fe emission lines originating from the brown-dwarf atmosphere. This is the first brown-dwarf atmosphere to have been observed to exhibit metal emission lines as a direct result of intense irradiation. The equivalent widths of many of these lines show a significant difference between the day-side and night-side of the brown dwarf. This is likely an indication that efficient heat redistribution may not be happening on this object, in agreement with models of hot Jupiter atmospheres. The H α line strength variation shows a strong phase dependency as does the width. We have simulated the Ca ii emission lines using a model that includes the brown-dwarf Roche geometry and limb darkening, and we estimate the mass ratio of the system to be 0.135 ± 0.004. We also apply a gas-phase equilibrium code using a prescribed drift-phoenix model to examine how the chemical composition of the brown-dwarf upper atmosphere would change given an outward temperature increase, and discuss the possibility that this would induce a chromosphere above the brown-dwarf atmosphere.
Citation
Longstaff , E S , Casewell , S L , Wynn , G A , Maxted , P F L & Helling , C 2017 , ' Emission lines in the atmosphere of the irradiated brown dwarf WD0137−349B ' , Monthly Notices of the Royal Astronomical Society , vol. 471 , no. 2 , pp. 1728-1736 . https://doi.org/10.1093/mnras/stx1786
Publication
Monthly Notices of the Royal Astronomical Society
Status
Peer reviewed
DOI
https://doi.org/10.1093/mnras/stx1786
ISSN
0035-8711
Type
Journal article
Rights
© 2017 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. This work is made available online in accordance with the publisher’s policies. This is the final published version of the work, which was originally published at: https://doi.org/10.1093/mnras/stx1786
Description
ESL acknowledges the support of STFC studentship. SLC acknowledges support from the University of Leicester College of Science and Engineering. CH highlights the financial support of the European community under the FP7 ERC starting grant 257431. This work was supported by the Science and Technology Facilities Council [ST/M001040/1].
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/11749

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter