St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Register / Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Structure and evolution of the drainage system of a Himalayan debris-covered glacier, and its relationship with patterns of mass loss

Thumbnail
View/Open
Benn_2017_Cryosphere_Himalayan_CC.pdf (22.01Mb)
Date
22/09/2017
Author
Benn, Douglas I.
Thompson, Sarah
Gulley, Jason
Mertes, Jordan
Luckman, Adrian
Nicholson, Lindsey
Keywords
Glacier change
Himalayan Glaciation
Debris-covered glaciers
GE Environmental Sciences
DAS
BDC
Metadata
Show full item record
Abstract
We provide the first synoptic view of the drainage system of a Himalayan debris-covered glacier and its evolution through time, based on speleological exploration and satellite image analysis of Ngozumpa Glacier, Nepal. The drainage system has several linked components: 1) a seasonal subglacial drainage system below the upper ablation zone; 2) supraglacial channels allowing efficient meltwater transport across parts of the upper ablation zone; 3) sub-marginal channels, allowing long-distance transport of meltwater; 4) perched ponds, which intermittently store meltwater prior to evacuation via the englacial drainage system; 5) englacial cut-and-closure conduits, which may undergo repeated cycles of abandonment and reactivation; 6) a 'base-level' lake system (Spillway Lake) dammed behind the terminal moraine. The distribution and relative importance of these elements has evolved through time, in response to sustained negative mass balance. The area occupied by perched ponds has expanded upglacier at the expense of supraglacial channels, and Spillway Lake has grown as more of the glacier surface ablates to base level. Subsurface processes play a governing role in creating, maintaining and shutting down exposures of ice at the glacier surface, with a major impact on spatial patterns and rates of surface mass loss. Comparison of our results with observations on other glaciers indicate that englacial drainage systems play a key role in the response of debris-covered glaciers to sustained periods of negative mass balance.
Citation
Benn , D I , Thompson , S , Gulley , J , Mertes , J , Luckman , A & Nicholson , L 2017 , ' Structure and evolution of the drainage system of a Himalayan debris-covered glacier, and its relationship with patterns of mass loss ' , The Cryosphere , vol. 11 , pp. 2247-2264 . https://doi.org/10.5194/tc-11-2247-2017
Publication
The Cryosphere
Status
Peer reviewed
DOI
https://doi.org/10.5194/tc-11-2247-2017
ISSN
1994-0416
Type
Journal article
Rights
© Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License.
Description
Funding for Sarah Thompson as provided by the European Commission FP7-MC-IEF grant PIEF-GA-2012-330805, and for Lindsey Nicholson by the Austrian Science Fund (FWF) Elise Richter Grant (V309-N26). Financial support for fieldwork in 2009 was provided by the University Centre in Svalbard and a Royal Geographical Society fieldwork grant to Sarah Thompson. TerraSAR-X data were kindly provided by the German Aerospace Center (DLR) under project HYD0178. The meteorological data were collected within the Ev-K2-CNR SHARE Project, funded by contributions from the Italian National Research Council and the Italian Ministry of Foreign Affairs.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/11733

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter