Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorReinaud, Jean Noel
dc.contributor.authorDritschel, David Gerard
dc.contributor.authorCarton, Xavier
dc.date.accessioned2017-09-23T23:32:14Z
dc.date.available2017-09-23T23:32:14Z
dc.date.issued2016-09-23
dc.identifier245137988
dc.identifier4125a1ad-aafe-4707-ab2a-339337674e86
dc.identifier84988557322
dc.identifier000388104600001
dc.identifier.citationReinaud , J N , Dritschel , D G & Carton , X 2016 , ' Interaction between a surface quasi-geostrophic buoyancy filament and an internal vortex ' , Geophysical and Astrophysical Fluid Dynamics , vol. 110 , no. 6 , pp. 461-490 . https://doi.org/10.1080/03091929.2016.1233331en
dc.identifier.issn0309-1929
dc.identifier.otherORCID: /0000-0001-5449-6628/work/34852198
dc.identifier.otherORCID: /0000-0001-6489-3395/work/64697770
dc.identifier.urihttps://hdl.handle.net/10023/11727
dc.description.abstractThis paper focuses on the nonlinear interaction between a surface quasi-geostrophic buoyancy filament and an internal vortex. We first revisit the stability of an isolated buoyancy filament. The buoyancy profile considered is continuous and leads to a continuous velocity field, albeit one with infinite shear just outside its edge. The stability properties of an isolated filament help to interpret the unsteady interaction with a sub-surface (internal) vortex studied next. We find that, in all cases, the filament breaks into billows, analogous in form to those occurring in Kelvin-Helmholtz shear instability. For intense buoyancy filaments, the vortex itself may undergo strong deformations, including being split into several pieces. Generally, the nonlinear interaction causes both the filament and the vortex to lose their respective ‘self’-energies to the energy of interaction. The flow evolution depends sensitively on whether the vertical vorticity of the filament and the vortex have the same or opposite signs — termed “cooperative” and “adverse” shear respectively. In cooperative shear, the filament rolls up into a coherent surface eddy above a vortex initially placed below it, whereas in adverse shear, buoyancy is expelled above the vortex. Although sufficiently great shear induced by the buoyancy filament may split the vortex in both cases, adverse shear is significantly more destructive.
dc.format.extent28173002
dc.language.isoeng
dc.relation.ispartofGeophysical and Astrophysical Fluid Dynamicsen
dc.subjectVortex dynamicsen
dc.subjectSemi-quasigeostrophyen
dc.subjectQuasigeostrophyen
dc.subjectQA Mathematicsen
dc.subjectQC Physicsen
dc.subjectNDASen
dc.subject.lccQAen
dc.subject.lccQCen
dc.titleInteraction between a surface quasi-geostrophic buoyancy filament and an internal vortexen
dc.typeJournal articleen
dc.contributor.institutionUniversity of St Andrews. Applied Mathematicsen
dc.contributor.institutionUniversity of St Andrews. Scottish Oceans Instituteen
dc.contributor.institutionUniversity of St Andrews. Marine Alliance for Science & Technology Scotlanden
dc.identifier.doi10.1080/03091929.2016.1233331
dc.description.statusPeer revieweden
dc.date.embargoedUntil2017-09-23


This item appears in the following Collection(s)

Show simple item record