Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorReddy, Steven M.
dc.contributor.authorRiessen, Arie van
dc.contributor.authorSaxey, David W.
dc.contributor.authorJohnson, Tim E.
dc.contributor.authorRickard, William D. A.
dc.contributor.authorFougerouse, Denis
dc.contributor.authorFischer, Sebastian
dc.contributor.authorProsa, Ty J.
dc.contributor.authorRice, Katherine P.
dc.contributor.authorReinhard, David A.
dc.contributor.authorChen, Yimeng
dc.contributor.authorOlson, David
dc.date.accessioned2017-09-22T23:32:31Z
dc.date.available2017-09-22T23:32:31Z
dc.date.issued2016-12-15
dc.identifier246089948
dc.identifier8cd714bc-0098-4cd8-8de9-73b7362f2e0b
dc.identifier84989879535
dc.identifier000390958900009
dc.identifier.citationReddy , S M , Riessen , A V , Saxey , D W , Johnson , T E , Rickard , W D A , Fougerouse , D , Fischer , S , Prosa , T J , Rice , K P , Reinhard , D A , Chen , Y & Olson , D 2016 , ' Mechanisms of deformation-induced trace element migration in zircon resolved by atom probe and correlative microscopy ' , Geochimica et Cosmochimica Acta , vol. 195 , pp. 158-170 . https://doi.org/10.1016/j.gca.2016.09.019en
dc.identifier.issn0016-7037
dc.identifier.otherRIS: urn:0F0E0D3BD5076C8C0B3E48C1B79DF37E
dc.identifier.urihttps://hdl.handle.net/10023/11725
dc.descriptionThe facility is being developed under the auspices of the National Resource Sciences Precinct (NRSP) – a collaboration between CSIRO, Curtin University and The University of Western Australia – and is supported by the Science and Industry Endowment Fund (SIEF RI13-01). SMR acknowledges support from the ARC Core to Crust Fluid System COE (CE11E0070).en
dc.description.abstractThe widespread use of zircon in geochemical and geochronological studies of crustal rocks is underpinned by an understanding of the processes that may modify its composition. Deformation during tectonic and impact related strain is known to modify zircon trace element compositions, but the mechanisms by which this occurs remain unresolved. Here we combine electron backscatter diffraction, transmission Kikuchi diffraction and atom probe microscopy to investigate trace element migration associated with a ∼20 nm wide, 2° low-angle subgrain boundary formed in zircon during a single, high-strain rate, deformation associated with a bolide impact. The low-angle boundary shows elevated concentrations of both substitutional (Y) and interstitial (Al, Mg & Be) ions. The observed compositional variations reflect a dynamic process associated with the recovery of shock-induced vacancies and dislocations into lower energy low-angle boundaries. Y segregation is linked to the migration and localization of oxygen vacancies, whilst the interstitial ions migrate in association with dislocations. These data represent the direct nanoscale observation of geologically-instantaneous, trace element migration associated with crystal plasticity of zircon and provide a framework for further understanding mass transfer processes in zircon.
dc.format.extent13
dc.format.extent4869437
dc.language.isoeng
dc.relation.ispartofGeochimica et Cosmochimica Actaen
dc.subjectAtom probe microscopyen
dc.subjectNanoscaleen
dc.subjectZirconen
dc.subjectTrace elementen
dc.subjectGeochemistryen
dc.subjectMicrostructureen
dc.subjectEBSDen
dc.subjectReiditeen
dc.subjectImpacten
dc.subjectGE Environmental Sciencesen
dc.subjectQD Chemistryen
dc.subjectNDASen
dc.subject.lccGEen
dc.subject.lccQDen
dc.titleMechanisms of deformation-induced trace element migration in zircon resolved by atom probe and correlative microscopyen
dc.typeJournal articleen
dc.contributor.institutionUniversity of St Andrews. Earth and Environmental Sciencesen
dc.identifier.doi10.1016/j.gca.2016.09.019
dc.description.statusPeer revieweden
dc.date.embargoedUntil2017-09-22


This item appears in the following Collection(s)

Show simple item record