Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorBailey, Rosemary Anne
dc.date.accessioned2017-09-04T10:30:08Z
dc.date.available2017-09-04T10:30:08Z
dc.date.issued2017
dc.identifier.citationBailey , R A 2017 , ' Inference from randomized (factorial) experiments ' , Statistical Science , vol. 32 , no. 3 , pp. 352-355 . https://doi.org/10.1214/16-STS600en
dc.identifier.issn0883-4237
dc.identifier.otherPURE: 248065490
dc.identifier.otherPURE UUID: ce953096-1f70-41b3-80d6-fc5df4d83f83
dc.identifier.otherScopus: 85028615415
dc.identifier.otherORCID: /0000-0002-8990-2099/work/39600088
dc.identifier.otherWOS: 000409254500004
dc.identifier.urihttp://hdl.handle.net/10023/11606
dc.description.abstractThis is a contribution to the discussion of the interesting paper by Ding [Statist. Sci. 32 (2017) 331–345], which contrasts approaches attributed to Neyman and Fisher. I believe that Fisher’s usual assumption was unit-treatment additivity, rather than the “sharp null hypothesis” attributed to him. Fisher also developed the notion of interaction in factorial experiments. His explanation leads directly to the concept of marginality, which is essential for the interpretation of data from any factorial experiment.
dc.format.extent4
dc.language.isoeng
dc.relation.ispartofStatistical Scienceen
dc.rights© 2017, Institute of Mathematical Statistics. This work has been made available online in accordance with the publisher’s policies. This is the final published version of the work, which was originally published at www.projecteuclid.org / https://doi.org/10.1214/16-STS600en
dc.subjectFactorial designen
dc.subjectMarginalityen
dc.subjectRandomizationen
dc.subjectUnit-treatment additivityen
dc.subjectHA Statisticsen
dc.subjectQA Mathematicsen
dc.subjectT-NDASen
dc.subject.lccHAen
dc.subject.lccQAen
dc.titleInference from randomized (factorial) experimentsen
dc.typeJournal articleen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews.Statisticsen
dc.contributor.institutionUniversity of St Andrews.Centre for Interdisciplinary Research in Computational Algebraen
dc.identifier.doihttps://doi.org/10.1214/16-STS600
dc.description.statusPeer revieweden


This item appears in the following Collection(s)

Show simple item record