Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorSharma, Sunil V.
dc.contributor.authorTong, Xiaoxue
dc.contributor.authorPubill-Ulldemolins, Cristina
dc.contributor.authorCartmell, Christopher
dc.contributor.authorBogosyan, Emma J. A.
dc.contributor.authorRackham, Emma J.
dc.contributor.authorMarelli, Enrico
dc.contributor.authorHamed, Refaat B.
dc.contributor.authorGoss, Rebecca J.M.
dc.date.accessioned2017-08-21T10:30:06Z
dc.date.available2017-08-21T10:30:06Z
dc.date.issued2017-08-09
dc.identifier250890459
dc.identifiercbc03331-4d47-4811-912a-3cfd1b26bded
dc.identifier85027232303
dc.identifier000407198800018
dc.identifier.citationSharma , S V , Tong , X , Pubill-Ulldemolins , C , Cartmell , C , Bogosyan , E J A , Rackham , E J , Marelli , E , Hamed , R B & Goss , R J M 2017 , ' Living GenoChemetics by hyphenating synthetic biology and synthetic chemistry in vivo ' , Nature Communications , vol. 8 , 229 . https://doi.org/10.1038/s41467-017-00194-3en
dc.identifier.issn2041-1723
dc.identifier.urihttps://hdl.handle.net/10023/11518
dc.descriptionWe thank the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013/ERC consolidator grant GCGXC grant agreement no 614779) and ERAIB (Grant no. 031A338A) and H2020-MSCA-IF-2014 Grant no. 659399 for generous financial support.en
dc.description.abstractMarrying synthetic biology with synthetic chemistry provides a powerful approach toward natural product diversification, combining the best of both worlds: expediency and synthetic capability of biogenic pathways and chemical diversity enabled by organic synthesis. Biosynthetic pathway engineering can be employed to insert a chemically orthogonal tag into a complex natural scaffold affording the possibility of site-selective modification without employing protecting group strategies. Here we show that, by installing a sufficiently reactive handle (e.g., a C-Br bond) and developing compatible mild aqueous chemistries, synchronous biosynthesis of the tagged metabolite and its subsequent chemical modification in living culture can be achieved. This approach can potentially enable many new applications: for example, assay of directed evolution of enzymes catalyzing halo-metabolite biosynthesis in living cells or generating and following the fate of tagged metabolites and biomolecules in living systems. We report synthetic biological access to new-to-nature bromo-metabolites and the concomitant biorthogonal cross-coupling of halo-metabolites in living cultures.
dc.format.extent10
dc.format.extent1183453
dc.language.isoeng
dc.relation.ispartofNature Communicationsen
dc.subjectQD Chemistryen
dc.subjectQH301 Biologyen
dc.subjectChemistry(all)en
dc.subjectBiochemistry, Genetics and Molecular Biology(all)en
dc.subjectPhysics and Astronomy(all)en
dc.subjectNDASen
dc.subjectBDCen
dc.subjectR2Cen
dc.subject.lccQDen
dc.subject.lccQH301en
dc.titleLiving GenoChemetics by hyphenating synthetic biology and synthetic chemistry in vivoen
dc.typeJournal articleen
dc.contributor.sponsorEuropean Research Councilen
dc.contributor.sponsorBBSRCen
dc.contributor.institutionUniversity of St Andrews. School of Chemistryen
dc.contributor.institutionUniversity of St Andrews. Biomedical Sciences Research Complexen
dc.contributor.institutionUniversity of St Andrews. EaSTCHEMen
dc.identifier.doi10.1038/s41467-017-00194-3
dc.description.statusPeer revieweden
dc.identifier.grantnumberGCGXCen
dc.identifier.grantnumberBB/M004570/1en


This item appears in the following Collection(s)

Show simple item record