St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Investigation of metabolites for estimating blood deposition time

Thumbnail
View/Open
Ackermann_2017_IJLM_Metabolites_CC.pdf (454.7Kb)
Date
01/2018
Author
Lech, Karolina
Liu, Fan
Davies, Sarah K.
Ackermann, Katrin
Ang, Joo Ern
Middleton, Benita
Revell, Victoria L.
Raynaud, Florence J.
Hoveijn, Igor
Hut, Roelof A.
Skene, Debra J.
Kayser, Manfred
Keywords
Blood deposition time
Circadian biomarkers
Metabolites
mRNA
Trace time estimation
QH301 Biology
RB Pathology
QH426 Genetics
Pathology and Forensic Medicine
NDAS
Metadata
Show full item record
Abstract
Trace deposition timing reflects a novel concept in forensic molecular biology involving the use of rhythmic biomarkers for estimating the time within a 24-h day/night cycle a human biological sample was left at the crime scene, which in principle allows verifying a sample donor’s alibi. Previously, we introduced two circadian hormones for trace deposition timing and recently demonstrated that messenger RNA (mRNA) biomarkers significantly improve time prediction accuracy. Here, we investigate the suitability of metabolites measured using a targeted metabolomics approach, for trace deposition timing. Analysis of 171 plasma metabolites collected around the clock at 2-h intervals for 36 h from 12 male participants under controlled laboratory conditions identified 56 metabolites showing statistically significant oscillations, with peak times falling into three day/night time categories: morning/noon, afternoon/evening and night/early morning. Time prediction modelling identified 10 independently contributing metabolite biomarkers, which together achieved prediction accuracies expressed as AUC of 0.81, 0.86 and 0.90 for these three time categories respectively. Combining metabolites with previously established hormone and mRNA biomarkers in time prediction modelling resulted in an improved prediction accuracy reaching AUCs of 0.85, 0.89 and 0.96 respectively. The additional impact of metabolite biomarkers, however, was rather minor as the previously established model with melatonin, cortisol and three mRNA biomarkers achieved AUC values of 0.88, 0.88 and 0.95 for the same three time categories respectively. Nevertheless, the selected metabolites could become practically useful in scenarios where RNA marker information is unavailable such as due to RNA degradation. This is the first metabolomics study investigating circulating metabolites for trace deposition timing, and more work is needed to fully establish their usefulness for this forensic purpose.
Citation
Lech , K , Liu , F , Davies , S K , Ackermann , K , Ang , J E , Middleton , B , Revell , V L , Raynaud , F J , Hoveijn , I , Hut , R A , Skene , D J & Kayser , M 2018 , ' Investigation of metabolites for estimating blood deposition time ' , International journal of legal medicine , vol. 132 , no. 1 , pp. 25-32 . https://doi.org/10.1007/s00414-017-1638-y
Publication
International journal of legal medicine
Status
Peer reviewed
DOI
https://doi.org/10.1007/s00414-017-1638-y
ISSN
0937-9827
Type
Journal article
Rights
© The Author(s) 2017. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Description
This study was supported by a UK Biotechnology and Biological Sciences Research Council (BBSRC) Grant (BB/I019405/1) to DJS, grant 727.011.001 from the Netherlands Organization for Scientific Research (NWO) Forensic Science Program to MK and by Erasmus MC University Medical Centre Rotterdam. DJS is a Royal Society Wolfson Research Merit Award holder. RAH and IH were funded by the Dutch applied research foundation (STW Perspectief Program ‘OnTime’ project 12185).
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/11506

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter