Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorHopfmann, Caspar
dc.contributor.authorMusial, Anna
dc.contributor.authorMaier, Sebastian
dc.contributor.authorEmmerling, Monika
dc.contributor.authorSchneider, Christian
dc.contributor.authorHoefling, Sven
dc.contributor.authorKamp, Martin
dc.contributor.authorReitzenstein, Stephan
dc.date.accessioned2017-08-10T23:34:08Z
dc.date.available2017-08-10T23:34:08Z
dc.date.issued2016-09
dc.identifier.citationHopfmann , C , Musial , A , Maier , S , Emmerling , M , Schneider , C , Hoefling , S , Kamp , M & Reitzenstein , S 2016 , ' Efficient stray-light suppression for resonance fluorescence in quantum dot-micropillars using self-aligned metal apertures ' , Semiconductor Science and Technology , vol. 31 , no. 9 , 095007 . https://doi.org/10.1088/0268-1242/31/9/095007en
dc.identifier.issn0268-1242
dc.identifier.otherPURE: 243533547
dc.identifier.otherPURE UUID: b34b6bfc-763c-48b2-8bea-d6a6a4fa417d
dc.identifier.otherScopus: 84988355041
dc.identifier.otherWOS: 000396036500007
dc.identifier.urihttps://hdl.handle.net/10023/11423
dc.description.abstractWithin this work we propose and demonstrate a technological approach to efficiently suppress excitation laser stray-light in resonance fluorescence experiments on quantum dot-micropillars. To ensure efficient stray-light suppression, their fabrication process includes a planarization step and the subsequent covering with a titanium mask to fabricate self-aligned apertures at the micropillar positions. These apertures aim at limiting laser straylight in side-excitation vertical-detection configuration, while enabling detection of the optical signal through the top facet of the micropillars. Beneficial effects of these apertures are proven and quantitatively evaluated within a statistical study in which we determine and compare the stray-light suppression of 48 micropillars with and without metal apertures. Actual resonance fluorescence experiments on single quantum dots coupled to the cavity mode prove the relevance of the proposed approach and demonstrate that it will foster further studies on cavity quantum electrodynamics phenomena under coherent optical excitation.
dc.format.extent9
dc.language.isoeng
dc.relation.ispartofSemiconductor Science and Technologyen
dc.rights© 2016, IOP Publishing Ltd. This work is made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at iopscience.iop.org / https://dx.doi.org/10.1088/0268-1242/31/9/095007en
dc.subjectLight-matter interactionen
dc.subjectCavity quantum electrodynamicsen
dc.subjectResonance fluorescence of quantum dot microcavitiesen
dc.subjectStray-light suppression in resonant excitation schemeen
dc.subjectOptical properties of semiconductor quantum dots (III-V)en
dc.subjectQC Physicsen
dc.subjectTK Electrical engineering. Electronics Nuclear engineeringen
dc.subjectNDASen
dc.subject.lccQCen
dc.subject.lccTKen
dc.titleEfficient stray-light suppression for resonance fluorescence in quantum dot-micropillars using self-aligned metal aperturesen
dc.typeJournal articleen
dc.description.versionPostprinten
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. Condensed Matter Physicsen
dc.identifier.doihttps://doi.org/10.1088/0268-1242/31/9/095007
dc.description.statusPeer revieweden
dc.date.embargoedUntil2017-08-10


This item appears in the following Collection(s)

Show simple item record