Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorReinaud, Jean Noel
dc.contributor.authorDritschel, David Gerard
dc.contributor.authorCarton, Xavier
dc.date.accessioned2017-08-08T11:30:15Z
dc.date.available2017-08-08T11:30:15Z
dc.date.issued2017-08
dc.identifier.citationReinaud , J N , Dritschel , D G & Carton , X 2017 , ' Interaction between a surface quasi-geostrophic buoyancy anomaly jet and internal vortices ' , Physics of Fluids , vol. 29 , no. 8 , 086603 . https://doi.org/10.1063/1.4999474en
dc.identifier.issn1070-6631
dc.identifier.otherPURE: 250677886
dc.identifier.otherPURE UUID: aaa63a51-f46e-44fd-9b9f-fceb8c659d6b
dc.identifier.otherScopus: 85028440755
dc.identifier.otherORCID: /0000-0001-5449-6628/work/36288679
dc.identifier.otherWOS: 000409227500063
dc.identifier.otherORCID: /0000-0001-6489-3395/work/64697741
dc.identifier.urihttps://hdl.handle.net/10023/11404
dc.description.abstractThis paper addresses the dynamical coupling of the ocean's surface and the ocean's interior. In particular, we investigate the dynamics of an oceanic surface jet, and its interaction with vortices at depth. The jet is induced by buoyancy (density) anomalies at the surface. We first focus on the jet alone. The linear stability indicates there are two modes of instability: the sinuous and the varicose modes. When a vortex in present below the jet, it interacts with it. The velocity field induced by the vortex perturbs the jet and triggers its destabilisation. The jet also influences the vortex by pushing it under a region of co-operative shear. Strong jets may also partially shear out the vortex. We also investigate the interaction between a surface jet and a vortex dipole in the interior. Again, strong jets may partially shear out the vortex structure. The jet also modifies the trajectory of the dipole. Dipoles travelling towards the jet at shallow incidence angles may be reflected by the jet. Vortices travelling at moderate incidence angles normally cross below the jet. This is related to the displacement of the two vortices of the dipole by the shear induced by the jet. Intense jets may also destabilise early and form streets of billows. These billows can pair with the vortices and separate the dipole.
dc.format.extent16
dc.language.isoeng
dc.relation.ispartofPhysics of Fluidsen
dc.rightsCopyright © 2017, the Author(s). This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at http://dx.doi.org/10.1063/1.4999474en
dc.subjectSurface quasi-geostrophyen
dc.subjectQuasi-geostrophyen
dc.subjectJetsen
dc.subjectVortex dynamicsen
dc.subjectQC Physicsen
dc.subjectNDASen
dc.subjectBDCen
dc.subject.lccQCen
dc.titleInteraction between a surface quasi-geostrophic buoyancy anomaly jet and internal vorticesen
dc.typeJournal articleen
dc.description.versionPostprinten
dc.contributor.institutionUniversity of St Andrews. Scottish Oceans Instituteen
dc.contributor.institutionUniversity of St Andrews. Applied Mathematicsen
dc.contributor.institutionUniversity of St Andrews. Marine Alliance for Science & Technology Scotlanden
dc.identifier.doihttps://doi.org/10.1063/1.4999474
dc.description.statusPeer revieweden


This item appears in the following Collection(s)

Show simple item record