St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

A population pharmacokinetic model incorporating saturable pharmacokinetics and autoinduction for high rifampicin doses

Thumbnail
View/Open
Svensson_2017_A_population_CPT_CC.pdf (996.4Kb)
Date
04/2018
Author
Svensson, Robin J.
Aarnoutse, Rob E.
Diacon, Andreas H
Dawson, Rodney
Gillespie, Stephen H.
Boeree, Martin J.
Simonsson, Ulrika S. H.
Keywords
Rifampin
Tuberculosis
Pharmacokinetics
Modeling
Nonlinear models
RA0421 Public health. Hygiene. Preventive Medicine
RM Therapeutics. Pharmacology
3rd-DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Accumulating evidence suggest that increasing doses of rifampicin may shorten tuberculosis treatment. The PanACEA HIGHRIF1 trial assessed safety, pharmacokinetics and anti-mycobacterial activity of rifampicin at doses up to 40 mg/kg. Eighty-three pulmonary tuberculosis patients received 10, 20, 25, 30, 35 or 40 mg/kg rifampicin daily over 2 weeks, supplemented with standard doses of isoniazid, pyrazinamide and ethambutol in the second week. This study aimed at characterizing rifampicin pharmacokinetics observed in HIGHRIF1 using non-linear mixed effects modeling. The final population pharmacokinetic model included an enzyme turn-over model accounting for time-dependent elimination due to auto-induction, concentration-dependent clearance and dose-dependent bioavailability. The relationship between clearance and concentration was characterized by a Michaelis-Menten relationship. The relationship between bioavailability and dose was described using an Emax relationship. The model will be key in determining exposure-response relationships for rifampicin and should be considered when designing future trials and when treating future patients with high dose rifampicin.
Citation
Svensson , R J , Aarnoutse , R E , Diacon , A H , Dawson , R , Gillespie , S H , Boeree , M J & Simonsson , U S H 2018 , ' A population pharmacokinetic model incorporating saturable pharmacokinetics and autoinduction for high rifampicin doses ' , Clinical Pharmacology & Therapeutics , vol. 103 , pp. 674-683 . https://doi.org/10.1002/cpt.778
Publication
Clinical Pharmacology & Therapeutics
Status
Peer reviewed
DOI
https://doi.org/10.1002/cpt.778
ISSN
1532-6535
Type
Journal article
Rights
Copyright 2017 The Authors. Clinical Pharmacology & Therapeutics published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
Description
The research leading to these results has received funding from the Swedish Research Council in addition to the Innovative Medicines Initiative Joint Undertaking (www.imi.europe.eu) under grant agreement n°115337, resources of which are composed of financial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013) and EFPIA companies’ in kind contribution.
Collections
  • University of St Andrews Research
URL
http://onlinelibrary.wiley.com/doi/10.1002/cpt.778/full#footer-support-info
URI
http://hdl.handle.net/10023/11402

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter