Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorZerkle, Aubrey L.
dc.contributor.authorPoulton, Simon W.
dc.contributor.authorNewton, Robert J.
dc.contributor.authorMettam, Colin
dc.contributor.authorClaire, Mark W.
dc.contributor.authorBekker, Andrey
dc.contributor.authorJunium, Christopher K.
dc.date.accessioned2017-08-06T23:34:24Z
dc.date.available2017-08-06T23:34:24Z
dc.date.issued2017-02-23
dc.identifier.citationZerkle , A L , Poulton , S W , Newton , R J , Mettam , C , Claire , M W , Bekker , A & Junium , C K 2017 , ' Onset of the aerobic nitrogen cycle during the Great Oxidation Event ' , Nature , vol. 542 , no. 7642 , pp. 465-467 . https://doi.org/10.1038/nature20826en
dc.identifier.issn0028-0836
dc.identifier.otherPURE: 248664597
dc.identifier.otherPURE UUID: ad9e102a-5031-49a0-bb9d-88430f4f5c25
dc.identifier.otherScopus: 85016138193
dc.identifier.otherORCID: /0000-0001-9518-089X/work/34103236
dc.identifier.otherORCID: /0000-0003-2324-1619/work/60427954
dc.identifier.otherWOS: 000395094100033
dc.identifier.urihttps://hdl.handle.net/10023/11393
dc.descriptionThis study was supported financially by Natural Environment Research Council Fellowship NE/H016805 to AZ.en
dc.description.abstractThe rise of oxygen on the early Earth (about 2.4 billion years ago)1 caused a reorganization of marine nutrient cycles2, 3, including that of nitrogen, which is important for controlling global primary productivity. However, current geochemical records4 lack the temporal resolution to address the nature and timing of the biogeochemical response to oxygenation directly. Here we couple records of ocean redox chemistry with nitrogen isotope (15N/14N) values from approximately 2.31-billion-year-old shales5 of the Rooihoogte and Timeball Hill formations in South Africa, deposited during the early stages of the first rise in atmospheric oxygen on the Earth (the Great Oxidation Event)6. Our data fill a gap of about 400 million years in the temporal 15N/14N record4 and provide evidence for the emergence of a pervasive aerobic marine nitrogen cycle. The interpretation of our nitrogen isotope data in the context of iron speciation and carbon isotope data suggests biogeochemical cycling across a dynamic redox boundary, with primary productivity fuelled by chemoautotrophic production and a nitrogen cycle dominated by nitrogen loss processes using newly available marine oxidants. This chemostratigraphic trend constrains the onset of widespread nitrate availability associated with ocean oxygenation. The rise of marine nitrate could have allowed for the rapid diversification and proliferation of nitrate-using cyanobacteria and, potentially, eukaryotic phytoplankton.
dc.format.extent10
dc.language.isoeng
dc.relation.ispartofNatureen
dc.rights© 2017 the Authors. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1038/nature20826en
dc.subjectGE Environmental Sciencesen
dc.subjectDASen
dc.subjectBDCen
dc.subjectR2Cen
dc.subjectSDG 14 - Life Below Wateren
dc.subject.lccGEen
dc.titleOnset of the aerobic nitrogen cycle during the Great Oxidation Eventen
dc.typeJournal itemen
dc.contributor.sponsorNERCen
dc.description.versionPostprinten
dc.contributor.institutionUniversity of St Andrews. St Andrews Centre for Exoplanet Scienceen
dc.contributor.institutionUniversity of St Andrews. School of Earth & Environmental Sciencesen
dc.contributor.institutionUniversity of St Andrews. St Andrews Isotope Geochemistryen
dc.contributor.institutionUniversity of St Andrews. Earth and Environmental Sciencesen
dc.identifier.doihttps://doi.org/10.1038/nature20826
dc.description.statusPeer revieweden
dc.date.embargoedUntil2017-08-06
dc.identifier.urlhttp://rdcu.be/o3p7en
dc.identifier.grantnumberNE/H016805/2en


This item appears in the following Collection(s)

Show simple item record