Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorHeinrich, Robert
dc.contributor.authorPopescu, Alexandru
dc.contributor.authorHangauer, Andreas
dc.contributor.authorStrzoda, Rainer
dc.contributor.authorHöfling, Sven
dc.date.accessioned2017-08-01T14:30:09Z
dc.date.available2017-08-01T14:30:09Z
dc.date.issued2017-08
dc.identifier.citationHeinrich , R , Popescu , A , Hangauer , A , Strzoda , R & Höfling , S 2017 , ' High performance direct absorption spectroscopy of pure and binary mixture hydrocarbon gases in the 6 - 11 μ m range ' , Applied Physics B: Lasers and Optics , vol. 123 , 223 . https://doi.org/10.1007/s00340-017-6796-6en
dc.identifier.issn0946-2171
dc.identifier.otherPURE: 250351138
dc.identifier.otherPURE UUID: 0fd857ef-42cc-4fc5-a9b9-43c91e2c946e
dc.identifier.otherScopus: 85026779436
dc.identifier.otherWOS: 000407901200009
dc.identifier.urihttps://hdl.handle.net/10023/11342
dc.descriptionThe project has received funding from the European Unions Horizon 2020 research and innovation program under grant agreement No 636930.en
dc.description.abstractThe availability of accurate and fast hydrocarbon analyzers, capable of real-time operation while enabling feedback-loops, would lead to a paradigm change in the petro-chemical industry. Primarily gas chromatographs measure the composition of hydrocarbon process streams. Due to sophisticated gas sampling, these analyzers are limited in response time. As hydrocarbons absorb in the mid-infrared spectral range, the employment of fast spectroscopic systems is highly attractive due to significantly reduced maintenance costs and the capability to setup real-time process control. New developments in mid-infrared laser systems pave the way for the development of high-performance analyzers provided that accurate spectral models are available for multi-species detection. In order to overcome current deficiencies in the availability of spectroscopic data, we developed a laser-based setup covering the 6–11 μm wavelength range. The presented system is designated as laboratory reference system. Its spectral accuracy is at least 6.6×10−3 cm−1 with a precision of 3×10−3 cm−1. With a “per point” minimum detectable absorption of 1.3×10−3 cm−1 Hz−1/2 it allows us to perform systematic measurements of hydrocarbon spectra of the first 7 alkanes under conditions which are not tabulated in spectroscopic database. We exemplify the system performance with measured direct absorption spectra of methane, propane, iso-butane, and a mixture of methane and propane.
dc.format.extent9
dc.language.isoeng
dc.relation.ispartofApplied Physics B: Lasers and Opticsen
dc.rights© The Author(s) 2017. This article is an open access publication. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.en
dc.subjectQC Physicsen
dc.subjectNDASen
dc.subject.lccQCen
dc.titleHigh performance direct absorption spectroscopy of pure and binary mixture hydrocarbon gases in the 6 - 11 μm rangeen
dc.typeJournal articleen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. Condensed Matter Physicsen
dc.identifier.doihttps://doi.org/10.1007/s00340-017-6796-6
dc.description.statusPeer revieweden


This item appears in the following Collection(s)

Show simple item record