St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Identifying and analysing protostellar disc fragments in smoothed particle hydrodynamics simulations

Thumbnail
View/Open
Forgan_2017_MNRAS_ProtostellarDisc_FinalPubVersion.pdf (5.414Mb)
Date
21/09/2017
Author
Hall, Cassandra
Forgan, Duncan
Rice, Ken
Funder
European Commission
European Research Council
Grant ID
Keywords
Brown dwarfs
Disc interactions
Hydrodynamics
Planet
Planetary systems
Planets and satellites: dynamical evolution and stability
Protoplanetary discs
QB Astronomy
QC Physics
Astronomy and Astrophysics
Space and Planetary Science
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
We present a new method of identifying protostellar disc fragments in a simulation based on density derivatives, and analyse our data using this and the existing CLUMPFIND method,which is based on an ordered search over all particles in gravitational potential energy. Using smoothed particle hydrodynamics, we carry out nine simulations of a 0.25 M⊙ disc around a1 M⊙ star, all of which fragment to form at least two bound objects. We find that when using all particles ordered in gravitational potential space, only fragments that survive the duration of the simulation are detected. When we use the density derivative method, all fragments are detected, so the two methods are complementary, as using the two methods together allows us to identify all fragments, and to then determine those that are likely to be destroyed. We find a tentative empirical relationship between the dominant azimuthal wavenumber in the disc m and the maximum semimajor axis a fragment may achieve in a simulation, such that amax α 1/m. We find the fragment destruction rate to be around half that predicted from population synthesis models. This is due to fragment-fragment interactions in the early gas phase of the disc, which can cause scattering and eccentricity pumping on short time-scales, and affects the fragment's internal structure. We therefore caution that measurements of eccentricity as a function of semimajor axis may not necessarily constrain the formation mechanism of giant planets and brown dwarfs.
Citation
Hall , C , Forgan , D & Rice , K 2017 , ' Identifying and analysing protostellar disc fragments in smoothed particle hydrodynamics simulations ' , Monthly Notices of the Royal Astronomical Society , vol. 470 , no. 3 , pp. 2517-2538 . https://doi.org/10.1093/mnras/stx1244
Publication
Monthly Notices of the Royal Astronomical Society
Status
Peer reviewed
DOI
https://doi.org/10.1093/mnras/stx1244
ISSN
0035-8711
Type
Journal article
Rights
© 2017 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. This work is made available online in accordance with the publisher’s policies. This is the final published version of the work, which was originally published at: https://dx.doi.org/10.1093/mnras/stx1244
Description
KR gratefully acknowledges support from STFC grant ST/M001229/1. DF gratefully acknowledges support from the ECOGAL project, grant agreement 291227, funded by the European Research Council under ERC-2011-ADG. The research leading to these results also received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement number 313014 (ETAEARTH). This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 681601).
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/11288

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter