St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Emergent Weyl fermion excitations in TaP explored by 181Ta quadrupole resonance

Thumbnail
View/Open
Yasuoka_preprint.pdf (1.524Mb)
Date
09/06/2017
Author
Yasuoka, H.
Kubo, T.
Kishimoto, Y.
Kasinathan, D.
Schmidt, M.
Yan, B.
Zhang, Y.
Tou, H.
Felser, C.
Mackenzie, A. P.
Baenitz, M.
Keywords
QC Physics
TK Electrical engineering. Electronics Nuclear engineering
Physics and Astronomy(all)
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
The 181Ta quadrupole resonance [nuclear quadrupole resonance (NQR)] technique is utilized to investigate the microscopic magnetic properties of the Weyl semimetal TaP. We find three zero-field NQR signals associated with the transition between the quadrupole split levels for Ta with I=7/2 nuclear spin. A quadrupole coupling constant, νQ=19.250 MHz, and an asymmetric parameter of the electric field gradient, η=0.423, are extracted, in good agreement with band structure calculations. In order to examine the magnetic excitations, the temperature dependence of the spin-lattice relaxation rate (1/T1T) is measured for the f2 line (±5/2↔±3/2 transition). We find that there exist two regimes with quite different relaxation processes. Above T∗≈30 K, a pronounced (1/T1T) α T2 behavior is found, which is attributed to the magnetic excitations at the Weyl nodes with temperature-dependent orbital hyperfine coupling. Below T∗, the relaxation is mainly governed by a Korringa process with 1/T1T=const, accompanied by an additional T-1/2-type dependence to fit our experimental data. We show that Ta NQR is a novel probe for the bulk Weyl fermions and their excitations.
Citation
Yasuoka , H , Kubo , T , Kishimoto , Y , Kasinathan , D , Schmidt , M , Yan , B , Zhang , Y , Tou , H , Felser , C , Mackenzie , A P & Baenitz , M 2017 , ' Emergent Weyl fermion excitations in TaP explored by 181 Ta quadrupole resonance ' , Physical Review Letters , vol. 118 , no. 23 , 236403 . https://doi.org/10.1103/PhysRevLett.118.236403
Publication
Physical Review Letters
Status
Peer reviewed
DOI
https://doi.org/10.1103/PhysRevLett.118.236403
ISSN
0031-9007
Type
Journal article
Rights
© 2017, American Physical Society. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at journals.aps.org / https://doi.org/10.1103/PhysRevLett.118.236403
Description
T. K., Y. K., and H. T. appreciate the financial support from JSPS KAKENHI Grants (No. 15K21732 and No. 15H05885). D. K. acknowledges funding via FOR 1346 from the Deutsche Forschungsgemeinschaft.
Collections
  • University of St Andrews Research
URL
https://journals.aps.org/prl/supplemental/10.1103/PhysRevLett.118.236403
URI
http://hdl.handle.net/10023/11222

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter