St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Towards computer vision based ancient coin recognition in the wild — automatic reliable image preprocessing and normalization

Thumbnail
View/Open
Conn_2017_Towards_computer_vision_based_IJCNN_AAM.pdf (3.075Mb)
Date
14/05/2017
Author
Conn, Brandon
Arandelovic, Ognjen
Keywords
CJ Numismatics
QA75 Electronic computers. Computer science
NDAS
Metadata
Show full item record
Abstract
As an attractive area of application in the sphere of cultural heritage, in recent years automatic analysis of ancient coins has been attracting an increasing amount of research attention from the computer vision community. Recent work has demonstrated that the existing state of the art performs extremely poorly when applied on images acquired in realistic conditions. One of the reasons behind this lies in the (often implicit) assumptions made by many of the proposed algorithms — a lack of background clutter, and a uniform scale, orientation, and translation of coins across different images. These assumptions are not satisfied by default and before any further progress in the realm of more complex analysis is made, a robust method capable of preprocessing and normalizing images of coins acquired ‘in the wild’ is needed. In this paper we introduce an algorithm capable of localizing and accurately segmenting out a coin from a cluttered image acquired by an amateur collector. Specifically, we propose a two stage approach which first uses a simple shape hypothesis to localize the coin roughly and then arrives at the final, accurate result by refining this initial estimate using a statistical model learnt from large amounts of data. Our results on data collected ‘in the wild’ demonstrate excellent accuracy even when the proposed algorithm is applied on highly challenging images.
Citation
Conn , B & Arandelovic , O 2017 , Towards computer vision based ancient coin recognition in the wild — automatic reliable image preprocessing and normalization . in 2017 International Joint Conference on Neural Networks (IJCNN) . , 7966024 , IEEE , pp. 1457-1464 , 2017 International Joint Conference on Neural Networks, IJCNN 2017 , Anchorage , United States , 14/05/17 . https://doi.org/10.1109/IJCNN.2017.7966024
 
conference
 
Publication
2017 International Joint Conference on Neural Networks (IJCNN)
DOI
https://doi.org/10.1109/IJCNN.2017.7966024
Type
Conference item
Rights
© 2017, IEEE. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at ieeexplore.ieee.org / https://doi.org/10.1109/IJCNN.2017.7966024
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/11195

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter