St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Heating by transverse waves in simulated coronal loops

Thumbnail
View/Open
Antolin_2017_A_A_TransverseWaves_AAM.pdf (2.483Mb)
Date
25/08/2017
Author
Karampelas, K.
Van Doorsselaere, T.
Antolin, P.
Funder
European Research Council
Grant ID
647214
Keywords
Magnetohydrodynamics (MHD)
Sun: corona
Sun: oscillations
QB Astronomy
QC Physics
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Context.  Recent numerical studies of oscillating flux tubes have established the significance of resonant absorption in the damping of propagating transverse oscillations in coronal loops. The nonlinear nature of the mechanism has been examined alongside the Kelvin-Helmholtz instability,which is expected to manifest in the resonant layers at the edges of the flux tubes. While these two processes have been hypothesized to heat coronal loops through the dissipation of wave energy into smaller scales, the occurring mixing with the hotter surroundings can potentially hide this effect. Aims.  We aim to study the effects of wave heating from driven and standing kink waves in a coronal loop. Methods.  Using the MPI-AMRVAC code, we perform ideal, three dimensional magnetohydrodynamic (MHD) simulations of both (a) footpoint driven and (b) free standing oscillations in a straight coronal flux tube, in the presence of numerical resistivity. Results.  We have observed the development of Kelvin-Helmholtz eddies at the loop boundary layer of all three models considered here, as well as an increase of the volume averaged temperature inside the loop. The main heating mechanism in our setups was Ohmic dissipation, as indicated by the higher values for the temperatures and current densities located near the footpoints. The introduction of a temperature gradient between the inner tube and the surrounding plasma, suggests that the mixing of the two regions, in the case of hotter environment, greatly increases the temperature of the tube at the site of the strongest turbulence, beyond the contribution of the aforementioned wave heating mechanism.
Citation
Karampelas , K , Van Doorsselaere , T & Antolin , P 2017 , ' Heating by transverse waves in simulated coronal loops ' , Astronomy & Astrophysics , vol. 604 , A130 . https://doi.org/10.1051/0004-6361/201730598
Publication
Astronomy & Astrophysics
Status
Peer reviewed
DOI
https://doi.org/10.1051/0004-6361/201730598
ISSN
0004-6361
Type
Journal article
Rights
© 2017, ESO . This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at www.aanda.org / https://doi.org/https://doi.org/10.1051/0004-6361/201730598
Description
K.K. was funded by GOA-2015-014 (KU Leuven). T.V.D was supported by the IAP P7/08 CHARM (Belspo) and the GOA-2015-014 (KU Leuven). P.A. acknowledges funding from the UK Science and Technology Facilities Council and the European Union Horizon 2020 research and innovation programme (grant agreement No. 647214).
Collections
  • University of St Andrews Research
URL
http://adsabs.harvard.edu/abs/2017arXiv170602640K
URI
http://hdl.handle.net/10023/11122

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter