St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Silicon isotopes reveal recycled altered oceanic crust in the mantle sources of ocean island basalts

Thumbnail
View/Open
Savage_2016_GCA_Basalts_AAM.pdf (1.005Mb)
Date
15/09/2016
Author
Pringle, Emily A.
Moynier, Frédéric
Savage, Paul S.
Jackson, Matthew G.
Moreira, Manuel
Day, James M.D.
Keywords
Silicon isotopes
Ocean Island Basalts
Mantle heterogeneity
Recycling
GE Environmental Sciences
NDAS
BDC
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
The study of silicon (Si) isotopes in Ocean Island Basalts (OIB) has the potential to discern between different models for the origins of geochemical heterogeneities in the mantle. Relatively large (∼several per mil per atomic mass unit) Si isotope fractionation occurs in low-temperature environments during biochemical and geochemical precipitation of dissolved Si, where the precipitate is preferentially enriched in the lighter isotopes relative to the dissolved Si. In contrast, only a limited range (∼tenths of a per mil) of Si isotope fractionation has been observed from high-temperature igneous processes. Therefore, Si isotopes may be useful as tracers for the presence of crustal material within OIB mantle source regions that experienced relatively low-temperature surface processes in a manner similar to other stable isotope systems, such as oxygen. Characterizing the isotopic composition of the mantle is also of central importance to the use of the Si isotope system as a basis for comparisons with other planetary bodies (e.g., Moon, Mars, asteroids). Here we present the first comprehensive suite of high-precision Si isotope data obtained by MC-ICP-MS for a diverse suite of OIB. Samples originate from ocean islands in the Pacific, Atlantic, and Indian Ocean basins and include representative end-members for the EM-1, EM-2, and HIMU mantle components. On average, δ30Si values for OIB (−0.32 ± 0.09‰, 2 sd) are in general agreement with previous estimates for the δ30Si value of Bulk Silicate Earth (−0.29 ± 0.07‰, 2 sd; Savage et al., 2014). Nonetheless, some small systematic variations are present; specifically, most HIMU-type (Mangaia; Cape Verde; La Palma, Canary Islands) and Iceland OIB are enriched in the lighter isotopes of Si (δ30Si values lower than MORB), consistent with recycled altered oceanic crust and lithospheric mantle in their mantle sources.
Citation
Pringle , E A , Moynier , F , Savage , P S , Jackson , M G , Moreira , M & Day , J M D 2016 , ' Silicon isotopes reveal recycled altered oceanic crust in the mantle sources of ocean island basalts ' , Geochimica et Cosmochimica Acta , vol. 189 , pp. 282-295 . https://doi.org/10.1016/j.gca.2016.06.008
Publication
Geochimica et Cosmochimica Acta
Status
Peer reviewed
DOI
https://doi.org/10.1016/j.gca.2016.06.008
ISSN
0016-7037
Type
Journal article
Rights
© 2016 Published by Elsevier Ltd. This work is made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://dx.doi.org/10.1016/j.gca.2016.06.008
Description
EP thanks the Chateaubriand STEM fellowship program for funding. FM thanks the European Research Council under the European Community’s H2020 framework program/ERC grant agreement #637503 (Pristine) and the Agence Nationale de la Recherche for a chaire d’Excellence Sorbonne Paris Cité (IDEX13C445) and for the UnivEarthS Labex program (ANR-10-LABX-0023 and ANR-11-IDEX-0005-02). PS thanks the support of the Marie Curie FP7-IOF fellowship “Isovolc”.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/10979

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter