St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Unusual, basin-scale, fluid-rock interaction in the Palaeoproterozoic Onega basin from Fennoscandia : preservation in calcite δ18O of an ancient high geothermal gradient

Thumbnail
View/Open
Prave_2016_PR_Fennoscandia_AM.pdf (7.239Mb)
Date
08/2016
Author
Fallick, A. E.
Melezhik, V. A.
Brasier, A. T.
Prave, A. R.
Funder
NERC
Grant ID
NE/G004285/1
Keywords
Palaeoproterozoic
Zaonega Formation
Geothermal gradient
Oxygen isotope
Carbonate diagenesis
GE Environmental Sciences
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
A variety of carbonates of different geneses, as indicated by petrography and geochemistry, are found throughout 400m of the volcano-sedimentary rocks of the Zaonega Formation of Palaeoproterozoic age in the Onega Basin of Fennoscandia. Following intensive sampling and analysis of varied calcites from drillcore recovered during the ICDP FAR-DEEP program, we report a highly unusual depth distribution of calcite oxygen isotope values (δ18Ocal). Unprecedentedly for such rocks, the δ18Ocal values over the full depth interval of 400m are strongly linearly correlated with depth (r2 = 0.9015, n=178). We propose that this is the result of major oxygen isotope resetting through water-rock interaction with a fluid of relatively constant oxygen isotopic composition (δ18Ow). In this model, the observed linear δ18Ocal-depth relationship is then a consequence of the increase in temperature with depth because of the background geothermal gradient. Minor deviations from the overall linear trend are likely due to bed-scale geological factors including locally high impermeability, and oxygen isotope modification of δ18Ow by comparatively intense water-rock interaction. Were the observed δ18Ocal values to have been reset during the greenschist facies Svecofennian metamorphism which affected the rocks at c. 1800Ma, the implied geothermal gradient of ∼ 560°C km-1 is geologically unreasonable and, accordingly, this hypothesis is ruled out. Rather, the δ18Ocal variation of 5‰ over 400m implies a near-surface depth for the rocks during fluid interaction, and this is consistent with a surface-derived origin of the infiltrating fluid (δ18Ow ∼ -13.6‰ for a surface temperature of 15°C and geothermal gradient of ∼ 52 °C km-1). It is speculated that the fluid accessed the carbonates from the basin edge by bed-parallel rather than cross-formational flow. There is an intriguing distribution of Na in the sedimentary rocks of the Zaonega Formation. Sodium is relatively abundant in rocks below a certain depth (the Lowermost Dolostone at ∼258m), but rare in shallower sequences. It is argued that this distribution did not originate with the basin-scale fluid-rock interaction documented above, but may rather be the result of evaporite dissolution, and subsequent redistribution of soluble elements during fluid flow associated with the syndepositional emplacement of basin-wide igneous rocks.
Citation
Fallick , A E , Melezhik , V A , Brasier , A T & Prave , A R 2016 , ' Unusual, basin-scale, fluid-rock interaction in the Palaeoproterozoic Onega basin from Fennoscandia : preservation in calcite δ 18 O of an ancient high geothermal gradient ' , Precambrian Research , vol. 281 . https://doi.org/10.1016/j.precamres.2016.06.001
Publication
Precambrian Research
Status
Peer reviewed
DOI
https://doi.org/10.1016/j.precamres.2016.06.001
ISSN
0301-9268
Type
Journal article
Rights
© 2016 Elsevier B.V. All rights reserved. This work is made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://dx.doi.org/10.1016/j.precamres.2016.06.001
Description
The authors acknowledge financial support from ICDP for the drilling programme. AEF, ATB and ARP thank NERC for financial support through NE/G00398X/1. VAM, AEC, and AL thank the Norwegian Research Council for financial support through 191530/V30.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/10913

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter